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CHAPTER

ONE

FOREWORD

First the applications all moved to the cloud. And now they’re being torn apart. Let me explain what I mean
by that.

As markets grow, the unit of function around which one can build a business shrinks. A classic example of
this can be seen in the history of the automotive industry. The Ford River Rouge Complex was built in the
late 1920s. At the time, mass-produced cars were relatively new, and the market was relatively small. And
so factories like the River Rouge Complex had to build all the subcomponents too. Roughly, in one side of
the factory went water, rubber, and iron ore, and out the other side came full automobiles. Of course, as the
market for cars grew, so did a massive ecosystem of suppliers of car components: wheels, seats, floor mats,
and the like. Today the large car companies are more akin to integrators than auto parts makers.

The same dynamic is happening with the application. In the 1970s the same manufacturer would build the
chips, the circuit boards, the system form factor, the operating system, and each of the applications. Over time
as the market has grown, the system has disaggregated. The hardware and software separated and spawned
multiple independent companies. And then companies started to be built around independent applications.

The market hasn’t stopped growing and over the last few years we’ve seen the application itself disaggregate.
Commonly used subcomponents of applications are being pulled out, and entire companies and projects are
being built around them. Today, if you’re building an application, there are third-party APIs available for
authenticating users, sending texts or email, streaming videos, authorizing access to resources, and many
other useful functions.

So what does this have to do with the book you’re about to read? While the last decade was a consolidation
of applications into the cloud, the next decade is largely going to be about the explosion of applications and
application components away from it. Now that subcomponents of workloads have been largely decoupled
from having to sit with the application, they can be run anywhere. And in particular they can be run on
infrastructure that’s purposely built and optimized for them! In fact, we are starting to see what can only
be described as an anti-cloud trend where large companies are choosing to pull some workloads back from
large clouds to their own optimized infrastructure. And we’re even seeing startups choosing to build their
own infrastructure from the get-go because they understand the cost and performance advantages of doing
so.

In “Edge Cloud Operations: A Systems Approach” the authors provide a detailed overview of not just cloud
operations (which are so last decade) but operations in this new era of distributed clouds. In many ways, the
cloud era was a low point of systems, because so much below the application layer was buried deep within
the engineering organizations of the three large cloud providers. But that’s changing, and to change with it,
you need to understand how it all works. And that’s exactly why you need to read this book.
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CHAPTER

TWO

PREFACE

The cloud is ubiquitous. Everyone uses the cloud to either access or deliver services, but not everyone will
build and operate a cloud. So why should anyone care about how to turn a pile of servers and switches into
a 24/7 service delivery platform? That’s what Google, Microsoft, Amazon and the other cloud providers do
for us, and they do a perfectly good job of it.

The answer, we believe, is that the cloud is becoming ubiquitous in another way, as distributed applications
increasing run not just in large, central datacenters but at the edge. As applications are disaggregated, the
cloud is expanding from hundreds of datacenters to tens of thousands of enterprises. And while it is clear
that the commodity cloud providers are eager to manage those edge clouds as a logical extension of their
datacenters, they do not have a monopoly on the know-how for making that happen.

This book lays out a roadmap that a small team of engineers followed over the course of a year to stand up
and operationalize an edge cloud and then operate it 24/7. This edge cloud spans a dozen enterprises, and
hosts a non-trivial cloud native service—5G connectivity in our case, but that’s just an example. The team
was able to do this by leveraging 20+ open source components, but selecting those components is just a start.
There were dozens of technical decisions to make along the way, and a few thousand lines of configuration
code to write. We believe this is a repeatable exercise, which we report in this book. The code for those
configuration files is open source, for those who want to pursue the topic in more detail.

What do we mean by an edge cloud? We’re drawing a distinction between clouds run by the hyperscale
cloud providers in their massive data centers, which we think of as the core, and those run by enterprises (or
managed for them) at the edge. The edge is where the real, physical world meets the cloud. For example, it
is the place where data from sensors is likely to be gathered and processed, and where services that need to
be close to the end user for reasons of latency or bandwidth are delivered.

Our roadmap may not be the right one for all circumstances, but it does shine a light on the fundamental
challenges and trade-offs involved in operationalizing a cloud. As we can attest based on our experience, it’s
a complicated design space with an overabundance of terminology and storylines to untangle.
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2.1 Intended Audience

We hope this book makes valuable reading for anyone who is trying to stand up and operationalize their own
edge cloud infrastructure, but we also aim to provide useful information for at least two other broad groups.

First, there will be a set of readers who need to evaluate the options available, particularly to decide between
using the cloud services offered by one of the hyperscalers or building their own edge cloud (or some com-
bination of these). We hope to demystify the landscape of edge clouds for this audience to help inform those
decisions.

Secondly, there will be a group of application and service developers who need to build on top of whatever
cloud infrastructure their organization has chosen to use. We believe it is important for these developers
to understand what goes on “under the hood” of the cloud at least at a high level, so that they can make
their applications manageable and reliable. There is increasingly close interaction between developers and
operators (as evidenced by the DevOps movement) and we aim to facilitate that collaboration. Topics such
as monitoring and observability are particularly important for this audience.

2.2 Guided Tour of Open Source

The good news is that there is a wealth of open source components that can be assembled to help manage cloud
platforms and scalable applications built on those platforms. That’s also the bad news. With several dozen
cloud-related projects available at open source consortia like the Linux Foundation, Cloud Native Computing
Foundation, Apache Foundation, and Open Networking Foundation, navigating the project space is one of the
biggest challenges we faced in putting together a cloud management platform. This is in large part because
these projects are competing for mindshare, with both significant overlap in the functionality they offer and
extraneous dependencies on each other.

One way to read this book is as a guided tour of the open source landscape for cloud control and management.
And in that spirit, we do not replicate the excellent documentation those projects already provide, but instead
include links to project-specific documentation (which often includes tutorials that we encourage you to try).
We also include snippets of code from those projects, but these examples are chosen to help solidify the main
points we’re trying to make about the management platform as a whole; they should not be interpreted as
an attempt to document the inner-working of the individual projects. Our goal is to explain how the various
puzzle pieces fit together to build an end-to-end management system, and in doing so, identify both various
tools that help and the hard problems that no amount of tooling can eliminate.

It should come as no surprise that there are challenging technical issues to address (despite marketing claims
to the contrary). After all, how to operationalize a computing system is a question that’s as old as the field
of Operating Systems. Operationalizing a cloud is just today’s version of that fundamental problem, which
has become all the more interesting as we move up the stack, from managing devices to managing services.
This topic is both timely and foundational.
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CHAPTER

THREE

CHAPTER 1: INTRODUCTION

Clouds provide a set of tools for bringing up and operating scalable services, but how do you operationalize
a cloud in the first place? The two problems are not mutually exclusive—after all, a cloud is realized as a set
of services—but asking the question this way eliminates the temptation to give the answer “the cloud takes
care of that for you.” This book describes how to operationalize a cloud, starting with bare-metal hardware,
all the way to offering one or more managed services to users.

Few of us are likely to have reason to instantiate a hyperscale datacenter, but deploying private edge clouds
in an enterprise—and optionally connecting that edge to a datacenter to form a hybrid cloud—is becoming
increasingly common. We use the term “edge cloud” to distinguish our focus from the “core”, which is the
traditional domain of the hyperscale operators. The edge is more likely to be in a enterprise or an “Internet
of Things” setting such as a factory. The edge is the place where the cloud services connect to the real world,
e.g., via sensors and actuators, and where latency-sensitive services are deployed to be close to the consumers
of those services.1

The hyperscalers are indeed willing to manage your edge cloud for you, as an extension of their core data-
centers. And correspondingly, there is significant activity to provide such products, with Google’s Anthos,
Microsoft’s Azure Arc, and Amazon’s ECS-Anywhere as prime examples. But the barrier to operationalizing
a cloud is not so high that only a hyperscaler has the wherewithal to do it. It is possible to build a cloud—and
all the associated lifecycle management and runtime controls that are required to operate it—using readily
available open source software packages.

Developers Have an Equal Role to Play

This book takes an operator-centric view of cloud operations, but developers have an equal role to play.
This role is reflected in practices like DevOps (which we discuss in Section 2.5), but can also been seen
in the underlying system design. The cloud architecture includes a management platform, which speci-
fies a runtime interface through which service developers (who provide functionality) interact with cloud
operators (who manage that functionality). Because there is a shared management platform to leverage,
developers do not need to (and should not) reinvent the wheel when it comes to provisioning, configuring,
controlling, and monitoring the services they implement.

Looking at the broader picture, this management platform is an essential part of how app builders and
service developers deliver functionality to end users. Today, functionality is most often delivered as a
Managed Service (as opposed to an inert pile of software). This means developers not only have to worry

1 Server clusters hosted in co-location facilities can also be considered edge clouds, and benefit from the technologies and prac-
tices described in this book, but we use enterprises as our exemplar deployment because they expose a broader set of requirements.
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about the algorithms and data structures needed to implement their app or service, they also need to
interface with the platform that operationalizes (activates) their code. It is common to focus on the former
and view the latter as a burden (especially if someone else will be responsible for deploying and operating
their code), but coding to the management platform interface is a central part of the contract for delivering
a managed service. Understanding and appreciating the “hows” and “whys” of this platform is critical
to developers doing their job.

This book describes what such a cloud management platform looks like. Our approach is to focus on the
fundamental problems that must be addressed—design issues that are common to all clouds—but then couple
this conceptual discussion with specific engineering choices made while operationalizing a specific enterprise
cloud. Our example is Aether, an ONF project to support 5G-enabled edge clouds as a managed service.
Aether has the following properties that make it an interesting use case to study:

• Aether starts with bare-metal hardware (servers and switches) deployed in edge sites (e.g., enterprises).
This on-prem cloud can range in size from a partial rack to multi-rack cluster, assembled according to
the best practices used in datacenters.

• Aether supports both “edge services” running on these on-prem clusters and “centralized services”
running in commodity cloud datacenters. In this sense it is a hybrid cloud.2

• Aether augments this edge cloud with 5G-Connectivity-as-a-Service, giving us a service that must be
operationalized (in addition to the underlying cloud). The end result is that Aether provides a managed
Platform-as-a-Service (PaaS).

• Aether is built entirely from open source components. The only thing it adds is the “glue code” and
“specification directives” required to make it operational. This means the recipe is fully reproducible
by anyone.

There is another important reason Aether makes for an interesting example. It is a system being deployed at
the confluence of three traditionally distinct management domains: enterprises (where system admins have
long been responsible for installing and maintaining purpose-built appliances), network operators (where
access technologies have historically been delivered as Telco-based solutions), and cloud providers (where
commodity hardware and cloud native software is now readily available). This complicates our job, because
each of these three domains brings its own conventions and terminology to the table. But understanding
how these three stakeholders approach operationalization gives us a broader perspective on the problem.
We return to the confluence of enterprise, cloud, access technologies later in this chapter, but we start by
addressing the terminology challenge.

Further Reading

Aether: 5G-Connected Edge Cloud.

Aether Documentation.

2 Technically, Aether is also a multi-cloud because it is designed to take advantage of services provided by multiple public clouds,
but the private/public (edge/central) aspect is the most relevant, so we use hybrid terminology throughout this book.
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3.1 1.1 Terminology

The terminology used to talk about operating cloud services represents a mix of “modern” concepts that are
native to the cloud, and “traditional” concepts that are artifacts from earlier systems (many of which are now
being subsumed by the cloud, but retain some of their original operational language). This is especially true
at the intersection of the cloud and Telcos, who—like the Sámi of Scandinavia having over 180 words for
snow—have an exceedingly rich vocabulary for operating a network.

A major source of confusion is that we are in the midst of a transition from network systems being built
from purpose-built devices to software-based services running on commodity hardware. This often results in
multiple terms being used for the same concept, or more problematically, having one domain subtly repurpose
a term from another domain. To avoid talking past each other, it is important to first define a few concepts
and introduce the related terminology.

• Operations & Maintenance (O&M): A traditional term used to characterize the overall challenge of
operationalizing a network, where generally speaking, operators use an O&M Interface to manage the
system.

– FCAPS: An acronym (Fault, Configuration, Accounting, Performance, Security) historically
used in the Telco industry to enumerate the requirements for an operational system. The O&M
interface must provide a means to detect and manage faults, configure the system, account for
usage, and so on.

– OSS/BSS: Another Telco acronym (Operations Support System, Business Support System), re-
ferring to the subsystem that implements both operational logic (OSS) and business logic (BSS).
It is usually the top-most component in the overall O&M hierarchy.

– EMS: Yet another Telco acronym (Element Management System), corresponding to an inter-
mediate layer in the overall O&M hierarchy. An EMS is to a particular type of device what an
OSS/BSS is to the network as a whole.

• Orchestration: A general term similar to O&M, but originating in the cloud context. Involves as-
sembling (e.g., allocating, configuring, connecting) a collection of physical or logical resources on
behalf of some workload. If only a single resource or device is involved, we would probably use a
term like “configuration” instead, so orchestration typically implies “orchestrating” across multiple
components.

Narrowly defined, an orchestrator is responsible for spinning up virtual machines (or containers) and
logically interconnecting them (with virtual networks). More broadly, orchestration encompasses as-
pects of all the management-related functions described in this book.

If you are trying to map cloud terminology onto Telco terminology, an orchestrator is often equated
with a cloudified version of the OSS/BSS mechanism. This top-most layer is sometimes called a
Service Orchestrator since it is responsible for assembling a collection of Virtual Network Functions
(VNFs) into an end-to-end-service chain.

– Playbook/Workflow: A program or script that implements a multi-step orchestration process.
(The term workflow is also used in a UX context to describe a multi-step operation that a user
performs on a system using a GUI.)

• Provisioning: Adding capacity (either physical or virtual resources) to a system, usually in response
to changes in workload, including the initial deployment.

3.1. 1.1 Terminology 9
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– Zero-Touch Provisioning: Usually implies adding new hardware without requiring a human to
configure it (beyond physically connecting the device). This implies the new component auto-
configures itself, which means the term can also be applied to virtual resources (e.g., virtual
machines, services) to indicate that no manual configuration step is needed to instantiate the
resource.

– Remote Device Management: A standard (e.g., IPMI, Redfish) that defines a way to remotely
manage hardware devices in support of zero-touch provisioning. The idea is to send and receive
out-of-band messages over the LAN in place of having video or serial console access to the
device. Additionally, these may integrate with monitoring and other device health telemetry
systems.

– Inventory Management: Planning and tracking both the physical (racks, servers, switches, ca-
bling) and virtual (IP ranges and addresses, VLANs) resources is a sub-step of the provisioning
process. This process frequently starts using simple spreadsheets and text files, but as complexity
grows, a dedicated database for inventory facilitates greater automation.

• Lifecycle Management: Upgrading and replacing functionality (e.g., new services, new features to
existing services) over time.

– Continuous Integration / Continuous Deployment (CI/CD): An approach to Lifecycle Man-
agement in which the path from development (producing new functionality) to testing, integra-
tion, and ultimately deployment is an automated pipeline. CI/CD typically implies continuously
making small incremental changes rather than performing large disruptive upgrades.

– DevOps: An engineering discipline that fuses the Development process and Operational require-
ments silos, balancing feature velocity against system reliability. As a practice, it leverages CI/CD
methods and is typically associated with container-based (also known as cloud native) systems,
as typified by Site Reliability Engineering (SRE) practiced by cloud providers like Google.

– In-Service Software Upgrade (ISSU): A requirement that a component continue running during
the deployment of an upgrade, with minimal disruption to the service delivered to end-users.
ISSU generally implies the ability to incrementally roll-out (and roll-back) an upgrade, but is
specifically a requirement on individual components (as opposed to the platform used to manage
a set of components).

• Monitoring & Telemetry: Collecting data from system components to aid in management decisions.
This includes diagnosing faults, tuning performance, doing root cause analysis, performing security
audits, and provisioning additional capacity.

– Analytics: A program (often using statistical models) that produces additional insights (value)
from raw data. It can be used to close a control loop (i.e., auto-reconfigure a system based on
these insights), but could also be targeted at a human operator who subsequently takes some
action.

Another way to talk about operations is in terms of stages, leading to a characterization that is common for
traditional network devices:

• Day (-1): Hardware configuration that is applied to a device (e.g., via a console) when it is first powered
on. These configurations correspond to firmware (BIOS or similar) settings, and often need knowledge
of how the device is physically connected to the network (e.g., the port being used).

• Day 0: Connectivity configuration required to establish communication between the device and the

10 Chapter 3. Chapter 1: Introduction
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available network services (e.g., setting a device’s IP address and default router). While such infor-
mation may be provided manually, this is an opportunity to auto-configure the device, in support of
Zero-Touch Provisioning.

• Day 1: Service-level configuration needed by the device, including parameters that allow the device
to take advantage of other services (e.g., NTP, Syslog, SMTP, NFS), as well as setting the parameters
this device needs to perform whatever service it provides. At the end of Day-1 operationalization, the
device is considered up-and-running, and able to support user traffic. This is also an opportunity for
zero-touch provisioning, in the sense that pre-programmed playbooks (workflows) should be able to
auto-configure the device rather than depending on human intervention.

• Day 2..N: On-going management in support of day-to-day operations, coupled with monitoring the
network to detect failures and service degradation, with the goal of sustaining the service. This may
involve some closed-loop control, but is often human-intense, which involves monitoring a dashboard
and fielding alerts, and then re-configuring the system as necessary. This is often referred to simply as
“Day 2 Operations”.

Again, “Day x” is how traditional network vendors characterize the process of operationalizing the devices
they sell, which in turn dictates how network operators and enterprise system admins bring those devices
online. While the general framework has been extended to Virtual Network Functions (VNFs), it is still a
device-centric view of operations. But once a system becomes cloud native, two things shift the balance
of concerns. First, all hardware is commodity, and so Days 0 and 1 configurations become fully automated
(and Day -1 is minimized since all devices are identical).3 Second, Day 2 operations become a much more
sophisticated process. This is because software-based systems are more agile, making functional upgrades
more commonplace. This focus on feature velocity is one of the inherent values of cloud-based systems, but
not surprisingly, it brings its own set of challenges to management.

This book addresses those management challenges, which brings us to a final note about two words we use
frequently: Operating and Operationalizing. Being able to operate a cloud is the end goal and implies an
ongoing process, whereas to operationalize a cloud implies the process of bringing a set of hardware and
software components into a state that makes it easy to sustain their ongoing operation. This distinction is
relevant because operationalizing a cloud is not a one-time proposition, but rather, an essential aspect of day-
to-day operations. Being rapidly evolvable is one of the cloud’s most important features, making continual
operationalization a key requirement for operating an edge cloud.

3.2 1.2 Disaggregation

To fully understand the challenge of operating a cloud, we have to start with the underlying building blocks: a
collection of software-based microservices running on commodity hardware. These building blocks are the
consequence of having disaggregated the bundled and purpose-built network appliances that came before.
From the management perspective, it is helpful to identify what becomes easier and what becomes harder
when you make this transition. This is both the challenge and the opportunity of disaggregation.

Broadly speaking, disaggregation is the process of breaking large bundled components into a set of smaller
constituent parts. SDN is one example of disaggregation—it decouples the network’s control and data planes,
with the former running as a cloud service and the latter running in commodity switches. The microservice
architecture is another example of disaggregation—it breaks monolithic cloud applications into a mesh of

3 Colloquially, this is sometimes referred to as a shift from taking care of pets to one of herding cattle.
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single-function components. Disaggregation is widely viewed as an essential step in accelerating feature
velocity. This is the opportunity side of the story, which is nicely summarized by Weaveworks.

Further Reading

Weaveworks. What You Need to Know for Cloud Native.

The challenge side of the story is that there are many more moving parts that have to be integrated, coor-
dinated, and managed. Circling back to terminology, Orchestration and Lifecycle Management become the
dominant issues because (a) many smaller parts have to be assembled, and (b) these individual parts are
expected to change more frequently. Much of this book focuses on these two issues.

The good news is that the industry seems to have converged on containers as the common representation
for “component packaging” and Kubernetes as the first-level container orchestrator. (We say “first-level”
because Kubernetes is not sufficient by itself.) This foundation, in turn, makes many of the other challenges
more manageable:

• Monitoring and other telemetry-related mechanisms are themselves realized as a set of container-based
microservices, deployed within the cloud they observe.

• ISSU becomes more tractable because the microservice architecture encourages stateless components,
with persistent state isolated in a single function-agnostic storage service, such as a key-value store.

• Zero-Touch Provisioning is more tractable because the hardware is commodity, and hence, (nearly)
identical. This also means the vast majority of configuration involves initiating software parameters,
which is more readily automated.

• Cloud native implies a set of best-practices for addressing many of the FCAPS requirements, especially
as they relate to availability and performance, both of which are achieved through horizontal scaling.
Secure communication is also typically built into cloud RPC mechanisms.

Another way to say this is that by rearchitecting bundled appliances and devices as horizontally scalable mi-
croservices running on commodity hardware, what used to be a set of one-off O&M problems are now solved
by widely applied best-practices from distributed systems, which have in turn been codified in state-of-the-
art cloud management frameworks (like Kubernetes). This leaves us with the problem of (a) provisioning
commodity hardware, (b) orchestrating the container building blocks, (c) deploying microservices to col-
lect and archive monitoring data in a uniform way, and (d) continually integrating and deploying individual
microservices as they evolve over time.

Finally, because a cloud is infinitely programmable, the system being managed has the potential to change
substantially over time.4 This means that the cloud management system must itself be easily extended to
support new features (as well as the refactoring of existing features). This is accomplished in part by imple-
menting the cloud management system as a cloud service, which means we will see a fair amount of recursive
dependencies throughout this book. It also points to taking advantage of declarative specifications of how all
the disaggregated pieces fit together. These specifications can then be used to generate elements of the man-
agement system, rather than having to manually recode them. This is a subtle issue we will return to in later
chapters, but ultimately, we want to be able to auto-configure the subsystem responsible for auto-configuring
the rest of the system.

4 For example, compare the two services Amazon offered ten years ago (EC2 and S3) with the well over 100 services available
on the AWS console today (not counting the marketplace of partner-provided services).
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3.3 1.3 Cloud Technology

Being able to operationalize a cloud starts with the building blocks used to construct the cloud in the first
place. This section summarizes the available technology, with the goal of identifying the baseline capabilities
of the underlying system. This baseline is then assumed by the collection of management-related subsystems
described throughout this book.

Before identifying these building blocks, we need to acknowledge that we are venturing into a gray area,
having to do with what you consider to be “part of the platform being managed” versus “part of the subsys-
tem that manages the platform.” To further complicate matters, where you draw the line shifts over time as
technology matures and becomes ubiquitous.

For example, if you start with the premise that a cloud hosts a set of containers, then your management
layer would be responsible for detecting and restarting failed containers. On the other hand, if you assume
containers are resilient (i.e., able to auto-recover), then the management layer would not need to include that
functionality (although it probably still needs to detect when the auto-recovery mechanism fails and correct
for that). This is not a unique situation—complex systems often include mechanisms that address problems at
multiple levels. For the purpose of this book, we just need to decide on a line that separates “technology that
is assumed” from “problems that remain and how we address them.” The following identifies the technology
we assume.

3.3.1 1.3.1 Hardware Platform

The assumed hardware building blocks are straightforward. We start with bare-metal servers and switches,
built using merchant silicon chips. These might, for example, be ARM or x86 processor chips and Tomahawk
or Tofino switching chips, respectively. The bare-metal boxes also include a bootstrap mechanism (e.g., BIOS
for servers and ONIE for switches), and a remote device management interface (e.g., IPMI or Redfish).

Further Reading

DMTF. Redfish.

A physical cloud cluster is then constructed with the hardware building blocks arranged as shown in Figure
3.1: one or more racks of servers connected by a leaf-spine switching fabric. The servers are shown above
the switching fabric to emphasize that software running on the servers controls the switches.

Figure 3.1 also includes the assumed low-level software components, which we describe next. Collectively,
all the hardware and software components shown in the figure form the platform. Where we draw the line
between what’s in the platform and what runs on top of the platform, and why it is important, will become
clear in later chapters, but the summary is that different mechanisms will be responsible for (a) bringing
up the platform and prepping it to host workloads, and (b) managing the various workloads that need to be
deployed on that platform.
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Figure 3.1.: Example building block components used to construct a cloud, including commodity servers
and switches, interconnected by a leaf-spine switching fabric.

3.3.2 1.3.2 Software Building Blocks

We assume four foundational software technologies, all running on the commodity processors in the cluster:

1. Linux provides isolation for running container workloads.

2. Docker containers package software functionality.

3. Kubernetes instantiates and interconnects containers.

4. Helm charts specify how collections of related containers are interconnected to build applications.

These are all well known and ubiquitous, and so we only summarize them here. Links to related information
for anyone that is not familiar with them (including excellent hands-on tutorials for the three container-related
building blocks) are given below.

Linux is the OS that runs on the bare metal systems. It provides low-level APIs that container runtime systems
use to implement isolation, including namespaces to isolate filesystem and network access, and cgroups to
limit memory and processor usage.

Docker is a container runtime that leverages OS isolation APIs to instantiate and run multiple containers,
each of which is an instance defined by a Docker image. Docker images are most frequently built using a
Dockerfile, which uses a layering approach that allows sharing and building customized images on top of
base images. A final image for a particular task incorporates all dependencies required by the software that
is to run in the container, resulting in a container image that is portable across servers, depending only on the
kernel and Docker runtime. We also assume one or more image artifact repositories of Docker containers
that we will want to deploy in our cloud, of which https://hub.docker.com/ is the best known example.

Further Reading
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Docker Tutorial.

Kubernetes is a container management system. It provides a programmatic interface for scaling container
instances up and down, allocating server resources to them, setting up virtual networks to interconnect those
instances, and opening service ports that external clients can use to access those instances. Behind the scenes,
Kubernetes monitors the liveness of those containers, and automatically restarts any that have failed. In other
words, if you instruct Kubernetes to spin up three instances of microservice X, Kubernetes will do its best to
keep three instances of the container that implements X running at all times.

Kubernetes also provides mechanisms that can be used to configure microservices when they start up, in-
cluding ConfigMaps, Secrets, and Operators. Because of the role they play in cloud management, we discuss
these mechanisms in more detail as they are introduced in later chapters.

Further Reading

Kubernetes Tutorial.

Helm is a configuration set manager that runs on top of Kubernetes. It issues calls against the Kubernetes
API according to an operator-provided specification, known as a Helm Chart. It is now common practice for
cloud applications built from a set of microservices to publish a Helm chart that defines how the application
is to be deployed on a Kubernetes cluster. See https://artifacthub.io/ for a collection of publicly available
Helm Charts.

Further Reading

Helm Tutorial.

The cloud management software described in this book is available in the form of a set of Docker containers,
plus the associated Helm Charts that specify how they are to be deployed in a Kubernetes cluster. Overall,
we make use of over 20 such open source software packages in the chapters that follow. Our goal is to show
how all these open building blocks can be assembled into a comprehensive cloud management platform.
We describe each tool in enough detail to appreciate how all the parts fit together—providing end-to-end
coverage by connecting all the dots—plus links to full documentation for those that want to dig deeper into
the details.

3.3.3 1.3.3 Switching Fabric

We assume the cloud is constructed using an SDN-based switching fabric, with a disaggregated control plane
running in the same cloud as the fabric interconnects. For the purpose of this book, we assume the following
SDN software stack:

• A Network OS hosts a set of control applications, including a control application that manages the
leaf-spine switching fabric. We use ONOS as an open source exemplar Network OS. ONOS, in turn,
hosts the SD-Fabric control app.

• A Switch OS runs on each switch, providing a northbound gNMI and gNOI interface through which
the Network OS controls and configures each switch. We use Stratum as an open source exemplar
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Switch OS.

Building a cloud using an SDN-based switching fabric is a best practice adopted by hyperscaler cloud
providers. Their solutions remain proprietary, so we use ONOS and Stratum as open source examples. It is
noteworthy that ONOS and Stratum are both packaged as Docker containers, and so can be orchestrated (on
both servers and switches) by Kubernetes and Helm.5

3.3.4 1.3.4 Repositories

For completeness, we need to mention that nearly every mechanism described in this book takes advantage of
cloud-hosted repositories, such as GitHub (for code), DockerHub (for Docker images), and ArtifactHub (for
Helm charts). We also assume complementary systems like Gerrit, which layer a code-review mechanism on
top of a Git repository, but having direct experience with Gerrit is not critical to understanding the material.

Further Reading

GitHub Tutorial.

Gerrit Code Review.

3.3.5 1.3.5 Other Options

Just as important as what building blocks we take for granted are the technologies we do not include. We
discuss three here.

First, you might have expected Service Mesh frameworks like Istio or Linkerd to be included. While it is
true that anyone running applications on top of Kubernetes might decide to use Istio or Linkerd to help do
that job—and this includes us, since much of the management system described in this book is implemented
as a set of microservices—we happen to not take that approach. This is primarily an engineering choice:
Service Meshes provide more features than we need, and correspondingly, we are able to realize the necessary
functionality using more narrowly focused mechanisms. There is also a pedagogical reason: The fine-grained
components we use are more consistent with our goal of identifying the elemental pieces of operations and
management, rather than having those components bundled in a comprehensive package. We do, however,
return to the role of service meshes in our discussion of observability in Chapter 6.

What’s the Master Plan?

There is a general issue of how one makes engineering choices about the combination of software packages
to use in a cloud-based system like the one this book describes. Ignoring the plethora of commercial
offerings, just the number of open source projects at the Linux Foundation and the Apache Foundation
available to help you build and operate a cloud is (by our count) approaching 100. These projects are
largely independent, and in many cases, competing for mindshare. This results in significant overlap in

5 Switches often include a commodity processor, typically running Linux and hosting control software, in addition to any switch-
ing chip that implements the data plane. Stratum runs on this processor, and exports a northbound API that ONOS uses to configure
and control the switch.
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functionality, with any Venn diagram you try to draw constantly shifting over time as projects add and
deprecate features.

This is all to say, there is no master plan for what a cloud management stack should look like. If you start
with component X as the centerpiece of your approach—perhaps because it solves your most immediate
problem—you will end up adding dozens of other components over time to fully complete the system.
Moreover, the end result will likely look different from the system someone else constructs starting with
component Y. There simply is no consensus framework for which you get to select a component from column
A, a second complementary component from column B, and so on. This is also true for the Aether managed
service we use as an exemplar.

This makes it all the more important that we take a first principles approach, which starts by identifying
the set of requirements and exploring the design space. Only as a final step do we select an existing soft-
ware component. This approach naturally results in an end-to-end solution that assembles many smaller
components, and tends to avoid bundled/multi-faceted solutions. This does not inoculate us from having
to evolve the system over time, but it does help to approach the topic with visibility into the full scope and
complexity of the design space. And even if one ends up adopting a bundled solution, understanding all
the trade-offs being made under the covers will help to make a more informed decision.

Second, we assume a container-based cloud platform. An alternative would have been VM-based. The
main reason for this choice is that containers are rapidly becoming the de facto way to deploy scalable and
highly available functionality, and operationalizing such functionality in enterprises is our primary use case.
Containers are sometimes deployed inside of VMs (rather than directly on physical machines), but in that
case, the VMs can be viewed as part of the underlying infrastructure (rather than a service that is offered
to users). Another way of saying this is that this book focuses on how to operationalize a Platform-as-a-
Service (PaaS) rather than an Infrastructure-as-a-Service (IaaS), although later chapters will describe how to
introduce VMs as an optional way to provision the underlying infrastructure for that PaaS.

Finally, the Aether edge cloud we use as an example is similar to many other edge cloud platforms now being
promoted as an enabling technology for Internet-of-Things. That Kubernetes-based on-prem/edge clouds
are becoming so popular is one reason they make for such a good case study. For example, Smart Edge Open
(formerly known as OpenNESS) is another open source edge platform, unique in that it includes several
Intel-specific acceleration technologies (e.g., DPDK, SR-IOV, OVS/OVN). For our purposes, however, the
exact set of components that make up the platform is less important than how the platform, along with all the
cloud services that run on top of it, are managed as a whole. The Aether example allows us to be specific,
but hopefully not at the expense of general applicability.

Further Reading

Smart Edge Open.
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3.4 1.4 Future of the Sysadmin

System administrators have been responsible for operating enterprise networks since the first file servers,
client workstations, and LANs were deployed over 30 years ago. Throughout that history, a robust vendor
ecosystem has introduced an increasingly diverse set of network appliances, compounding the challenge of
the sysadmin’s job. The introduction of virtualization technology led to server consolidation, but did not
greatly reduce the management overhead. This is because each virtual appliance remains in a management
silo.

Cloud providers, because of the scale of the systems they build, cannot survive with operational silos, and
so they introduced increasingly sophisticated cloud orchestration technologies. Kubernetes and Helm are
two high-impact examples. These cloud best-practices are now available to enterprises as well, but they are
often bundled as a managed service, with the cloud provider playing an ever-greater role in operating the
enterprise’s services. Outsourcing portions of the IT responsibility to a cloud provider is an attractive value
proposition for many enterprises, but comes with the risk of increased dependence on a single provider. This
equation is complicated by the increased likelihood that Mobile Network Operators (MNOs) also participate
in the rollout of private 5G connectivity within the enterprise, deployed as yet another cloud service.

The approach this book takes is to explore a best-of-both-worlds opportunity. It does this by walking you
through the collection of subsystems, and associated management processes, required to operationalize an
on-prem cloud, and then provide on-going support for that cloud and the services it hosts (including 5G
connectivity). Our hope is that understanding what’s under the covers of cloud-managed services will help
enterprises better share responsibility for managing their IT infrastructure with cloud providers, and poten-
tially MNOs.
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CHAPTER

FOUR

CHAPTER 2: ARCHITECTURE

This chapter identifies all the subsystems that go into building and operationalizing a cloud capable of running
an assortment of cloud-native services. We use Aether to illustrate specific design choices, and so we start
by describing why an enterprise might install a system like Aether in the first place.

PaaS for Industry 4.0

Edge clouds like Aether are an important component of a trend called Industry 4.0: A combination of
intelligent devices, robust wireless connectivity, and cloud-based AI/ML capabilities, all working together
to enable software-based optimization and innovation.

Connecting industry assets to the cloud has the potential to bring transformative benefits. This starts with
collecting deep operational data on assets and infrastructure, from sensors, video feeds and telemetry from
machinery. It also includes applying ML to this data to gain insights, identify patterns and predict out-
comes (e.g., when a device is likely to fail), followed by automating industrial processes so as to minimize
human intervention and enable remote operations (e.g., power optimization, idling quiescent machinery).
In general, the goal is to create an IT foundation for continually improving industrial operations through
software.

As for why we refer to Aether as a PaaS for such use cases, the answer is somewhat subjective. Generally,
a PaaS offers more than virtualized compute and storage (that is what IaaS does), and includes additional
layers of “middleware” to enable application developers to deploy their applications without dealing with
all the intricacies of managing the underlying infrastructure. In the case of Aether, the platform includes
support for 5G connectivity, including an API that edge apps can use to customize that connectivity to
better meet their objectives. This does not preclude also loading an ML-platform or an IoT-platform onto
Aether, further enhancing the application support it provides.

Aether is a Kubernetes-based edge cloud, augmented with a 5G-based connectivity service. Aether is targeted
at enterprises that want to take advantage of 5G connectivity in support of mission-critical edge applications
requiring predictable, low-latency connectivity. In short, “Kubernetes-based” means Aether is able to host
container-based services, and “5G-based connectivity” means Aether is able to connect those services to mo-
bile devices throughout the enterprise’s physical plant. This combination of features to support deployment
of edge applications, coupled with Aether being offered as a managed service, means Aether can fairly be
characterized as a Platform-as-a-Service (PaaS).

Aether supports this combination by implementing both the RAN and the user plane of the Mobile Core on-
prem, as cloud-native workloads co-located on the Aether cluster. This is often referred to as local breakout
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because it enables direct communication between mobile devices and edge applications without data traffic
leaving the enterprise. This scenario is depicted in Figure 4.1, which does not name the edge applications,
but substituting Internet-of-Things (IoT) would be an illustrative example.

Figure 4.1.: Overview of Aether as a hybrid cloud, with edge apps and the 5G data plane (called local
breakout) running on-prem and various management and control-related workloads running in a central
cloud.

The approach includes both edge (on-prem) and centralized (off-prem) components. This is true for edge
apps, which often have a centralized counterpart running in a commodity cloud. It is also true for the 5G
Mobile Core, where the on-prem User Plane (UP) is paired with a centralized Control Plane (CP). The
central cloud shown in this figure might be private (i.e., operated by the enterprise), public (i.e., operated
by a commercial cloud provider), or some combination of the two (i.e., not all centralized elements need to
run in the same cloud). Also shown in Figure 4.1 is a centralized Control and Management Platform. This
represents all the functionality needed to offer Aether as a managed service, with system administrators using
a portal exported by this platform to operate the underlying infrastructure and services within their enterprise.
The rest of this book is about everything that goes into implementing that Control and Management Platform.

4.1 2.1 Edge Cloud

The edge cloud, which in Aether is called ACE (Aether Connected Edge), is a Kubernetes-based cluster
similar to the one shown in Figure 3.1 of Chapter 1. It is a platform that consists of one or more server racks
interconnected by a leaf-spine switching fabric, with an SDN control plane (denoted SD-Fabric) managing
the fabric.

As shown in Figure 4.2, ACE hosts two additional microservice-based subsystems on top of this platform;
they collectively implement 5G-Connectivity-as-a-Service. The first subsystem, SD-RAN, is an SDN-based
implementation of the 5G Radio Access Network (RAN). It controls the small cell base stations deployed
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Figure 4.2.: Aether Connected Edge (ACE) = The cloud platform (Kubernetes and SD-Fabric) plus the
5G connectivity service (RAN and User Plane of Mobile Core). Dotted lines (e.g., between SD-RAN and
the individual base stations, and between the Network OS and the individual switches) represent control
relationships (e.g., SD-RAN controls the small cells and SD-Fabric controls the switches).

throughout the enterprise. The second subsystem, SD-Core, is an SDN-based implementation of the User
Plane half of the Mobile Core. It is responsible for forwarding traffic between the RAN and the Internet.
The SD-Core Control Plane (CP) runs off-site, and is not shown in Figure 4.2. Both subsystems (as well
as the SD-Fabric), are deployed as a set of microservices, but details about the functionality implemented
by these containers is otherwise not critical to this discussion. For our purposes, they are representative of
any cloud native workload. (The interested reader is referred to our companion 5G and SDN books for more
information about the internal working of SD-RAN, SD-Core, and SD-Fabric.)

Further Reading

L. Peterson and O. Sunay. 5G Mobile Networks: A Systems Approach. March 2020.

L. Peterson, et al. Software-Defined Networks: A Systems Approach. November 2021.

Once ACE is running in this configuration, it is ready to host a collection of edge applications (not shown in
Figure 4.2), and as with any Kubernetes-based cluster, a Helm chart would be the preferred way to deploy such
applications. What’s unique to ACE is the ability to connect such applications to mobile devices throughout
the enterprise using the 5G Connectivity Service implemented by SD-RAN and SD-Core. This service is
offered as a managed service, with enterprise system administrators able to use a programmatic API (and
associated GUI portal) to control that service; that is, authorize devices, restrict access, set Quality-of-Service
parameters for different devices and applications, and so on. How to provide such a runtime control interface
is the topic of Chapter 5.
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4.2 2.2 Hybrid Cloud

While it is possible to instantiate a single ACE cluster in just one site, Aether is designed to support multiple
ACE deployments, all of which are managed from the central cloud. Such a hybrid cloud scenario is depicted
in Figure 4.3, which shows two subsystems running in the central cloud: (1) one or more instances of the
Mobile Core Control Plane (CP), and (2) the Aether Management Platform (AMP).

Each SD-Core CP controls one or more SD-Core UPs, as specified by 3GPP, the standards organization
responsible for 5G. Exactly how CP instances (running centrally) are paired with UP instances (running at
the edges) is a runtime decision, and depends on the degree of isolation the enterprise sites require. AMP is
responsible for managing all the centralized and edge subsystems (as introduced in the next section).

Figure 4.3.: Aether runs in a hybrid cloud configuration, with Control Plane of Mobile Core and the Aether
Management Platform (AMP) running in the Central Cloud.

There is an important aspect of this hybrid cloud that is not obvious from Figure 4.3, which is that the
“hybrid cloud” we keep referring to is best described as a set of Kubernetes clusters, rather than a set of
physical clusters (similar to the one we started with in Figure 3.1 of Chapter 1). This is because, while
each ACE site usually corresponds to a physical cluster built out of bare-metal components, each of the SD-
Core CP subsystems shown in Figure 4.3 is actually deployed in a logical Kubernetes cluster on a commodity
cloud. The same is true for AMP. Aether’s centralized components are able to run in Google Cloud Platform,
Microsoft Azure, and Amazon’s AWS. They also run as an emulated cluster implemented by a system like
KIND—Kubernetes in Docker—making it possible for developers to run these components on their laptop.

To be clear, Kubernetes adopts generic terminology, such as “cluster” and “service”, and gives it a very
specific meaning. In Kubernetes-speak, a Cluster is a logical domain in which Kubernetes manages a set
of containers. This “Kubernetes cluster” may have a one-to-one relationship with an underlying physical
cluster, but it is also possible that a Kubernetes cluster is instantiated inside a datacenter, as one of potentially
thousands of such logical clusters. And as we’ll see in a later chapter, even an ACE edge site sometimes
hosts more than one Kubernetes cluster, for example, one running production services and one used for trial
deployments of new services.
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4.3 2.3 Stakeholders

With the understanding that our target environment is a collection of Kubernetes clusters—some running on
bare-metal hardware at edge sites and some running in central datacenters—there is an orthogonal issue of
how decision-making responsibility for those clusters is shared among multiple stakeholders. Identifying the
relevant stakeholders is an important prerequisite for establishing a cloud service, and while the example we
use may not be suitable for all situations, it does illustrate the design implications.

For Aether, we care about two primary stakeholders: (1) the cloud operators who manage the hybrid cloud as
a whole, and (2) the enterprise users who decide on a per-site basis how to take advantage of the local cloud
resources (e.g., what edge applications to run and how to slice connectivity resources among those apps).
We sometimes call the latter “enterprise admins” to distinguish them from “end-users” who might want to
manage their own personal devices.

The architecture is multi-tenant in the sense that it authenticates and isolates these stakeholders, allowing
each to access only those objects they are responsible for. This makes the approach agnostic as to whether
all the edge sites belong to a single organization (with that organization also responsible for operating the
cloud), or alternatively, there being a separate organization that offers a managed service to a set of distinct
enterprises (each of which spans one or more sites). The architecture can also accommodate end-users, and
provide them with a “self-service” portal, but we do not elaborate on that possibility.

There is a potential third stakeholder of note—third-party service providers—which points to the larger issue
of how we deploy and manage additional edge applications. To keep the discussion tangible—but remaining
in the open source arena—we use OpenVINO as an illustrative example. OpenVINO is a framework for
deploying AI inference models, which is interesting in the context of Aether because one of its use cases is
processing video streams, for example to detect and count people who enter the field of view of a collection
of 5G-connected cameras.

Further Reading

OpenVINO Toolkit.

On the one hand, OpenVINO is just like the 5G-related components we’re already incorporating into our
hybrid cloud: it is deployed as a Kubernetes-based set of microservices. On the other hand, we have to ask
who is responsible for managing it, which is to say “who operationalizes OpenVINO?”

One answer is that the operators who already manage the rest of the hybrid cloud also manage the collection
of edge applications added to cloud. Enterprise admins might activate and control those apps on a site-by-site
basis, but it is the operations team already responsible for provisioning, deploying, and managing those edge
clouds that also does the same for OpenVINO and any other applications that run on that cloud. Generalizing
from one edge service (5G connectivity) to arbitrarily many edge services has implications for control and
management (which we’ll discuss throughout the book), but fundamentally nothing changes in the course
we’ve already set out for ourselves.

Having the cloud operator curate and manage a set of edge services is the assumption Aether makes (and
we assume throughout this book), but for completeness, we take note of two other possibilities. One is
that we extend our hybrid architecture to support independent third-party service providers. Each new edge
service acquires its own isolated Kubernetes cluster from the edge cloud, and then the 3rd-party provider
subsumes all responsibility for managing the service running in that cluster. From the perspective of the
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cloud operator, though, the task just became significantly more difficult because the architecture would need
to support Kubernetes as a managed service, which is sometimes called Container-as-a-Service (CaaS).1
Creating isolated Kubernetes clusters on-demand is a step further than we take things in this book, in part
because there is a second possible answer that seems more likely to happen.

This second approach is that a multi-cloud emerges within enterprises. Today, most people equate multi-
cloud with services running across multiple hyperscalers, but with edge clouds becoming more common, it
seems likely that enterprises will invite multiple edge clouds onto their local premises, some hyperscaler-
provided and some not, each hosting a different subset of edge services. For example, one edge cloud might
host a 5G connectivity service and another might host an AI platform like OpenVINO. The question this
raises is whether the cloud management technologies described in this book still apply in that setting. The
answer is yes: the fundamental management challenges remain the same. The main difference is knowing
when to directly control a Kubernetes cluster (as we do in this book) and when to do so indirectly through
the manager for that cluster. There are also new problems that are unique to multi-clouds, such as inter-cloud
service discovery, but they are beyond the scope of this book.

4.4 2.4 Control and Management

We are now ready to describe the architecture of the Aether Management Platform (AMP), which as shown
in Figure 4.4, manages both the distributed set of ACE clusters and the other control clusters running in the
central cloud. And illustrating the recursive nature of the management challenge, AMP is also responsible
for managing AMP!

AMP includes one or more portals targeted at different stakeholders, with Figure 4.4 showing the two ex-
amples we focus on in this book: a User Portal intended for enterprise admins who need to manage services
delivered to a local site, and an Operations Portal intended for the ops team responsible for keeping Aether
up to date and running smoothly. Again, other stakeholders (classes of users) are possible, but this distinc-
tion does represent a natural division between those who use cloud services and those who operate cloud
services.

We do not focus on these portals, which provide a graphical interface to a subset of AMP functionality, but we
instead describe the aggregate functionality supported by AMP, which is organized around four subsystems:

• Resource Provisioning: Responsible for initializing and configuring resources (e.g., servers, switches)
that add, replace, or upgrade capacity for Aether.

• Lifecycle Management: Responsible for continuous integration and deployment of software function-
ality available on Aether.

• Runtime Control: Responsible for the ongoing configuration and control of the services (e.g., connec-
tivity) provided by Aether.

• Monitoring & Telemetry: Responsible for collecting, archiving, evaluating, and analyzing telemetry
data generated by Aether components.

Internally, each of these subsystems is implemented as a highly available cloud service, running as a collec-
tion of microservices. The design is cloud-agnostic, so AMP can be deployed in a public cloud (e.g., Google

1 This is not strictly an either-or-situation. It is possible to curate an edge service, provision cluster resources for it, but then
delegate operational responsibility to a 3rd-party service provider.
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Figure 4.4.: The four subsystems that comprise AMP: Resource Provisioning, Lifecycle Management, Run-
time Control, and Monitoring & Telemetry.

Cloud, AWS, Azure), an operator-owned Telco cloud, (e.g, AT&T’s AIC), or an enterprise-owned private
cloud. For the current pilot deployment of Aether, AMP runs in the Google Cloud.

The rest of this section introduces these four subsystems, with the chapters that follow filling in more detail
about each.

4.4.1 2.4.1 Resource Provisioning

Resource Provisioning configures and bootstraps resources (both physical and virtual), bringing them up
to a state so Lifecycle Management can take over and manage the software running on those resources. It
roughly corresponds to Day 0 operations, and includes both the hands-on aspect of installing and physically
connecting hardware, and the inventory-tracking required to manage physical assets.

Figure 4.5 gives a high-level overview. As a consequence of the operations team physically connecting
resources to the cloud and recording attributes for those resources in an Inventory Repo, a Zero-Touch Provi-
sioning system (a) generates a set of configuration artifacts that are stored in a Config Repo and used during
Lifecycle Management, and (b) initializes the newly deployed resources so they are in a state that Lifecycle
Management is able to control. The idea of storing configuration directives in a Repo, like any other code
module, is a practice known as Configuration-as-Code, and we will see it applied in different ways throughout
this book.

Recall from Chapter 1 that we called out the “Aether platform” as distinct from the cloud-native workloads
that are hosted on the platform. This is relevant here because Resource Provisioning has to get this platform
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Figure 4.5.: High-level overview of Resource Provisioning.

up and running before Lifecycle Management can do its job. But in another example of circular dependencies,
Lifecycle Management also plays a role in keeping the underlying platform up to date.

Clearly, the “Install & Inventory” step requires human involvement, and some amount of hands-on resource-
prep is necessary, but the goal is to minimize the operator configuration steps (and associated expertise) and
maximize the automation carried out by the Zero-Touch Provisioning system. Also realize that Figure 4.5 is
biased towards provisioning a physical cluster, such as the edge sites in Aether. For a hybrid cloud that also
includes one or more virtual clusters running in central datacenters, it is necessary to provision those virtual
resources as well. Chapter 3 describes provisioning from this broader perspective, considering both physical
and virtual resources.

4.4.2 2.4.2 Lifecycle Management

Lifecycle Management is the process of integrating debugged, extended, and refactored components (often
microservices) into a set of artifacts (e.g., Docker containers and Helm charts), and subsequently deploying
those artifacts to the operational cloud. It includes a comprehensive testing regime, and typically, a procedure
by which developers inspect and comment on each others’ code.

Figure 4.6.: High-level overview of Lifecycle Management.

Figure 4.6 gives a high-level overview, where it is common to split the integration and deployment phases,
the latter of which combines the integration artifacts from the first phase with the configuration artifacts gen-
erated by Resource Provisioning described in the previous subsection. The figure does not show any human
intervention (after development), which implies any patches checked into the code repo trigger integration,
and any new integration artifacts trigger deployment. This is commonly referred to as Continuous Integration

26 Chapter 4. Chapter 2: Architecture



Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

/ Continuous Deployment (CI/CD), although in practice, operator discretion and other factors are also taken
into account before deployment actually happens.

One of the key responsibilities of Lifecycle Management is version control, which includes evaluating depen-
dencies, but also the possibility that it will sometimes be necessary to both roll out new versions of software
and rollback to old versions, as well as operate with multiple versions deployed simultaneously. Managing
all the configuration state needed to successfully deploy the right version of each component in the system
is the central challenge, which we address in Chapter 4.

4.4.3 2.4.3 Runtime Control

Once deployed and running, Runtime Control provides a programmatic API that can be used by various
stakeholders to manage whatever abstract service(s) the system offers (e.g., 5G connectivity in the case of
Aether). As shown in Figure 4.7, Runtime Control partially addresses the “management silo” issue raised
in Chapter 1, so users do not need to know that connectivity potentially spans four different components, or
how to control/configure each of them individually. (Or, as in the case of the Mobile Core, that SD-Core is
distributed across two clouds, with the CP sub-part responsible for controlling the UP sub-part.) In the case
of the connectivity service, for example, users only care about being able to authorize devices and set QoS
parameters on an end-to-end basis.

Figure 4.7.: Example use case that requires ongoing runtime control.

Note that Figure 4.7 focuses on Connectivity-as-a-Service, but the same idea applies to all services the cloud
offers to end users. Thus, we can generalize the figure so Runtime Control mediates access to any of the
underlying microservices (or collections of microservices) the cloud designer wishes to make publicly ac-
cessible, including the rest of AMP! In effect, Runtime Control implements an abstraction layer, codified
with a programmatic API.

Given this mediation role, Runtime Control provides mechanisms to model (represent) the abstract services
to be offered to users; store any configuration and control state associated with those models; apply that state
to the underlying components, ensuring they remain in sync with the operator’s intentions; and authorize the
set API calls users try to invoke on each service. These details are spelled out in Chapter 5.
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4.4.4 2.4.4 Monitoring and Telemetry

In addition to controlling service functionality, a running system has to be continuously monitored so that
operators can diagnose and respond to failures, tune performance, do root cause analysis, perform security
audits, and understand when it is necessary to provision additional capacity. This requires mechanisms to
observe system behavior, collect and archive the resulting data, analyze the data and trigger various actions
in response, and visualize the data in human consumable dashboards (similar to the example shown in Figure
4.8).

Figure 4.8.: Example Aether dashboard, showing the health of one of the subsystems (SD-Core).

In broad terms, it is common to think of this aspect of cloud management as having three parts: a monitoring
component that collects quantitative metrics (e.g., load averages, transmission rates, ops per second); a log-
ging component that collects diagnostic messages (i.e., text strings explaining various event); and a tracing
component that can reconstruct workflows through a set of microservices. All include a timestamp, so it is
possible to link quantitative analysis with qualitative explanations in support of diagnostics and analytics.

4.4.5 2.4.5 Summary

This overview of the management architecture could lead one to conclude that these four subsystems were
architected, in a rigorous, top-down fashion, to be completely independent. But that is not the case. It is more
accurate to say that the system evolved bottom up, solving the next immediate problem one at a time, all the
while creating a large ecosystem of open source components that can be used in different combinations. What
we are presenting in this book is a retrospective description of an end result, organized into four subsystems
to help make sense of it all.

There are, in practice, many opportunities for interactions among the four components, and in some cases,
there are overlapping concerns that lead to considerable debate. This is what makes operationalizing a cloud
such a thorny problem. For example, it’s difficult to draw a crisp line between where resource provisioning
ends and lifecycle management begins. One could view provisioning as “Step 0” of lifecycle management.
As another example, the runtime control and monitoring subsystems are often combined in a single user
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interface, giving operators a way to both read (monitor) and write (control) various parameters of a running
system. Connecting those two subsystems is how we build closed loop control.

These two “simplifications” allow us to reduce the architectural overview of the management platform to the
two-dimensional representation shown in Figure 4.9. In one dimension, layered on top of the hybrid cloud
being managed, is the Runtime Control system (including Monitoring and Telemetry to close the control
loop). Users and Operators read and write parameters of the running system via a well-defined REST API.
In the other dimension, running beside the hybrid cloud, is the Lifecycle Management system (including
Resource Provisioning as Step 0). Operators and Developers specify changes to the system by checking
code (including configuration specs) into a repo, and then periodically triggering an upgrade of the running
system.

Figure 4.9.: Simplified representation of the management platform.

This simplified perspective draws attention to an ambiguity, which is the distinction between “changes to
the parameters of a running system” versus “upgrading the system that is running.” Generally, Lifecycle
Management takes responsibility for configuring each component (including what version of each component
is deployed), while runtime control takes responsibility for controlling each component. But where you draw
the line between configuration and control is somewhat arbitrary. Do configuration changes only happen
when you first boot a component, or can you change the configuration of a running system, and if you do,
how does that differ from changing a control parameter? And as suggested by the dotted arrow in Figure
4.9, is there value in having Runtime Control instigate changes via Lifecycle Management? The difference is
usually related to frequency of change (which is in turn related to how disruptive to existing traffic/workload
the change is), but ultimately it doesn’t matter what you call it, as long as the mechanisms you use meet all
of your requirements.

Of course, an operational system doesn’t tolerate such ambiguities very well. Each aspect of management
has to be supported in a well-defined, efficient and repeatable way. That’s why we include a description of
a concrete realization of each of the four subsystems, reflecting one particular set of design choices. We
call out the opportunities to make different engineering decisions, along with the design rationale behind our
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choices, as we add more details in the chapters that follow.

4.5 2.5 DevOps

The preceding discussion focuses on the subsystems that make up the Control and Management Platform, but
such a platform is used by people. This implies the need for a set of operational processes and procedures,
which in a cloud setting, are now commonly organized around the DevOps model. The following gives a
high-level summary, with a more extensive discussion of ops-related procedures presented throughout the
book.

DevOps has become an overused term, generally taken to mean that the line between the engineers who
develop cloud functionality and the operators who deploy and manage cloud functionality is blurred, with
the same team responsible for both. But that definition is too imprecise to be helpful. There are really three
aspects of DevOps that are important to understand.

First, when it comes to a set of services (or user-visible features), it is true that the developers play a role in
deploying and operating those services. Enabling them to do that is exactly the value of the Management
Platform. Consider the team responsible for SD-RAN in Aether, as an example. That team not only imple-
ments new SD-RAN features, but once their patch sets are checked into the code repository, those changes
are integrated and deployed by the automated toolchain introduced in the previous section. This means the
SD-RAN team is also responsible for:

1. Adding test cases to the CI half of Lifecycle Management, and writing any configuration specifications
needed by the CD half of Lifecycle Management.

2. Instrumenting their code so it reports into the Monitoring and Telemetry framework, giving them the
dashboards and alarms they need to troubleshoot any problems that arise.

3. Augmenting the data model of Runtime Control, so their component’s internal interfaces are plumbed
through to the cloud’s externally visible Northbound Interface.

Once deployed and operational, the SD-RAN team is also responsible for diagnosing any problems that
cannot be resolved by a dedicated “on call” support staff.2 The SD-RAN team is motivated to take advantage
of the platform’s automated mechanisms (rather than exploit short-term workarounds), and to document their
component’s behavior (especially how to resolve known problems), so they do not get support calls in the
middle of the night.

Experience at Google

Our brief sketch of DevOps is based on how the approach is practiced at Google, and in this context, it
is a great example of how good things come from efforts to minimize toil. As Google gained experience
building and running its cloud, the incremental improvements to their cloud management system were
assimilated in a system known as Borg.

2 Whether traditional or DevOps-based, there is typically a front-line support team, which is often said to provide Tier-1 support.
They interact directly with customers and are the first to respond to alarms, resolving the issue according to a well-scripted playbook.
If Tier-1 support is not able to resolve an issue, it is elevated to Tier-2 and eventually Tier-3, the latter of which is the developers
who best understand implementation details.
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Kubernetes, the open source project widely used across the industry today, was spun out of Borg. The
functionality embodied by Kubernetes evolved over time to deal with the operational challenges of deploy-
ing, upgrading, and monitoring a set of containers, serving as a great example of how a “rising tide lifts
all boats.” Given enough time, it may be the case that next layer of cloud management machinery, roughly
corresponding to the topics covered in this book, will also be taken as a given. The challenge, as we will
see, is the multi-dimensional scope of the problem.

Second, all of the activity outlined in the previous paragraph is possible only because of the rich set of
capabilities built into the Control and Management Platform that is the subject of this book.3 Someone
had to build that platform, which includes a testing framework that individual tests can be plugged into;
an automated deployment framework that is able to roll upgrades out to a scalable number of servers and
sites without manual intervention; a monitoring and telemetry framework that components can report into;
a runtime control environment that can translate high-level directives into low-level operations on backend
components; and so on. While each of these frameworks was once created by a team tasked with keeping
some other service running smoothly, they have taken on a life of their own. The Control and Management
Platform now has its own DevOps team(s), who in addition to continually improving the platform, also
field operational events, and when necessary, interact with other teams (e.g., the SD-RAN team in Aether) to
resolve issues that come up. They are sometimes called System Reliability Engineers (SREs), and in addition
to being responsible for the Control and Management Platform, they enforce operational discipline—the third
aspect of DevOps discussed next—on everyone else.

Finally, when operating with discipline and rigor, all of these teams strictly adhere to two quantitative rules.
The first balances feature velocity with system reliability. Each component is given an error budget (per-
centage of time it can be down), and new features cannot be rolled out unless the corresponding component
has been operating within this bound. This test is a “gate” on the CI/CD pipeline. The second rule balances
how much time is spent on operational toil (time spent by a human diagnosing or fixing problems) with time
spent engineering new capabilities into the Control and Management Platform to reduce future toil. If too
much time is spent toiling and too little time is spent making the Control and Management Platform better,
then it is taken as a sign that additional engineering resources are needed.

Further Reading

Site Reliability Engineering: How Google Runs Production Systems, 2016.

3 This we why we refer to the management system as a “platform”, with AMP as an illustrative example. It serves as a common
framework that developers of all the other cloud components can plug into and leverage. This is how you ultimately address the
“management silo” problem.
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CHAPTER

FIVE

CHAPTER 3: RESOURCE PROVISIONING

Resource Provisioning is the process of bringing virtual and physical resources online. It has both a hands-
on component (racking and connecting devices) and a bootstrap component (configuring how the resources
boot into a “ready” state). Resource Provisioning happens when a cloud deployment is first installed—i.e.,
an initial set of resources are provisioned—but also incrementally over time as new resources are added,
obsolete resources are removed, and out-of-date resources are upgraded.

The goal of Resource Provisioning is to be zero-touch, which is impossible for hardware resources because it
includes an intrinsically manual step. (We take up the issue of provisioning virtual resources in a moment.)
Realistically, the goal is to minimize the number and complexity of configuration steps required beyond
physically connecting the device, keeping in mind that we are starting with commodity hardware received
directly from a vendor, and not a plug-and-play appliance that has already been prepped.

When a cloud is built from virtual resources (e.g., VMs instantiated on a commercial cloud) the “rack and
connect” step is carried out by a sequence of API calls rather than a hands-on technician. Of course, we
want to automate the sequence of calls needed to activate virtual infrastructure, which has inspired an ap-
proach known as Infrastructure-as-Code, a special case of the Configuration-as-Code concept introduced in
Chapter 2. The general idea is to document, in a declarative format that can be “executed”, exactly what our
infrastructure is to look like; how it is to be configured. We use Terraform as our open source approach to
Infrastructure-as-Code.

When a cloud is built from a combination of virtual and physical resources, as is the case for a hybrid cloud
like Aether, we need a seamless way to accommodate both. To this end, our approach is to first overlay a
logical structure on top of hardware resources, making them roughly equivalent to the virtual resources we
get from a commercial cloud provider. This results in a hybrid scenario similar to the one shown in Figure 5.1.
We use NetBox as our open source solution for layering this logical structure on top of physical hardware.
NetBox also helps us address the requirement of tracking physical inventory.

Note that the Provisioning API shown on the right in Figure 5.1 is not the NetBox API. Terraform does not
interact directly with NetBox, but instead with artifacts left behind by the hardware provisioning process
described in Section 3.1. One way to think about this is that the task of booting hardware into the “ready”
state involves installing and configuring several subsystems that collectively form the cloud platform. It is
this platform that Terraform interacts with, using an API we describe at the end of Section 3.1.

This chapter describes both sides of Figure 5.1 starting with provisioning physical infrastructure. Our ap-
proach is to focus on the challenge of provisioning an entire site the first time. We comment on the simpler
problem of incrementally provisioning individual resources as relevant details emerge.
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Figure 5.1.: Resource Provisioning in a hybrid cloud that includes both physical and virtual resources.

5.1 3.1 Physical Infrastructure

The process of stacking and racking hardware is inherently human-intensive, and includes considerations
such as airflow and cable management. These issues are beyond the scope of this book. We focus instead
on the “physical/virtual” boundary, which starts with the cabling plan that a hands-on technician uses as a
blueprint. The details of such a plan are highly deployment-specific, but we use the example shown in Figure
5.2 to help illustrate all the steps involved. The example is based on Aether clusters deployed in enterprises,
which serves to highlight the required level of specificity. Considerable planning is required to specify an
appropriate Bill of Materials (BOM), including details about individual device models, but this aspect of the
problem is also outside our scope.

The blueprint shown in Figure 5.2 actually includes two logical clusters sharing a Management Switch and
a Management Server. The upper cluster corresponds to a production deployment, and includes five servers
and a 2x2 leaf-spine switching fabric. The lower cluster is for development, and includes two servers and a
single switch. Defining such logical groupings of hardware resources is not unique to Aether; we can ask a
commercial cloud provider to provision multiple logical clusters, so being able to do the same on physical
resources is a natural requirement.

In addition to following this blueprint, the technician also enters various facts about the physical infrastructure
into a database. This information, which is used in later provisioning steps, is where we pick up the story.

5.1.1 3.1.1 Document Infrastructure

Documenting the physical infrastructure’s logical structure in a database is how we cross the physical-to-
virtual divide. It involves both defining a set of models for the information being collected (this schema
effectively represents the logical structure shown in Figure 5.1), and entering the corresponding facts about
the physical devices. This process is familiar to anyone who is responsible for managing a network of devices,
whether it is the first stage in a larger automated framework (such as the one described in this book) or simply
a place to record what IP address has been assigned to each network appliance.

There are several open source tools available for this task. Our choice is NetBox. It supports IP address
management (IPAM); inventory-related information about types of devices and where they are installed; how
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Figure 5.2.: Example network cable plan for an edge cluster.

infrastructure is organized (racked) by group and site; and how devices are connected to consoles, networks,
and power sources. More information is readily available on the NetBox web site.

Further Reading

NetBox: Information Resource Modeling Application.

One of the key features of NetBox is the ability to customize the set of models used to organize all the
information that is collected. For example, an operator can define physical groupings like Rack and Site, but
also logical groupings like Organization and Deployment.1 In the following we use the Aether cable plan
shown in Figure 5.2 as an illustrative example, focusing on what happens when provisioning a single Aether
site (but keeping in mind that Aether spans multiple sites, as outlined in Chapter 2).

The first step is to create a record for the site being provisioned, and document all the relevant metadata for
that site. This includes the Name and Location of the Site, along with the Organization the site belongs to.
An Organization can have more than one Site, while a Site can (a) span one or more Racks, and (b) host
one or more Deployments. A Deployment is a logical cluster, corresponding, for example, to Production,
Staging, and Development. The cabling plan shown in Figure 5.2 includes two such deployments.

This is also the time to specify the VLANs and IP Prefixes assigned to this particular edge deployment.
Because it is important to maintain a clear relationship between VLANs, IP Prefixes, and DNS names (the

1 In this section, we denote models and model fields in italics (e.g., Site, Address) and specific values assigned to an instance of
a model as a constant (e.g., 10.0.0.0/22).
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last of which are auto-generated), it is helpful to walk through the following concrete example. We start with
the minimal set of VLANs needed per Site:

• ADMIN 1

• UPLINK 10

• MGMT 800

• FABRIC 801

These are Aether-specific, but they illustrate the set of VLANs a cluster might need. Minimally, one would
expect to see a “management” network (MGMT in this example) and a “data” network (FABRIC in this
example) in any cluster. Also specific to Aether (but generally applicable), if there are multiple Deployments
at a Site sharing a single management server, additional VLANs (incremented by 10 for MGMT/FABRIC)
are added. For example, a second Development deployment might define:

• DEVMGMT 810

• DEVFABRIC 811

IP Prefixes are then associated with VLANs, with all edge IP prefixes fitting into a /22 sized block. This
block is then partitioned in a way that works in concert with how DNS names are managed; i.e., names are
generated by combining the first <devname> component of the Device names (see below) with this suffix.
Using 10.0.0.0/22 as an example, there are four edge prefixes, with the following purposes:

• ADMIN Prefix 10.0.0.0/25 (for IPMI)

– Has the Management Server and Management Switch

– Assign the ADMIN 1 VLAN

– Set domain to admin.<deployment>.<site>.aetherproject.net

• MGMT Prefix 10.0.0.128/25 (for infrastructure control plane)

– Has the Server Management plane, Fabric Switch Management

– Assign MGMT 800 VLAN

– Set domain to mgmt.<deployment>.<site>.aetherproject.net

• FABRIC Prefix 10.0.1.0/25 (for infrastructure data plane)

– IP addresses of the qsfp0 port of the Compute Nodes to Fabric switches, plus other Fabric-
connected devices (e.g., eNB)

– Assign FABRIC 801 VLAN

– Set domain to fab1.<deployment>.<site>.aetherproject.net

• FABRIC Prefix 10.0.1.128/25 (for infrastructure data plane)

– IP addresses of the qsfp1 port of the Compute Nodes to fabric switches

– Assign FABRIC 801 VLAN

– Set domain to fab2.<deployment>.<site>.aetherproject.net
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There are other edge prefixes used by Kubernetes, but they do not need to be created in NetBox. Note that
qsfp0 and qsfp1 in this example denote transceiver ports connecting the switching fabric, where QSFP
stands for Quad (4-channel) Small Form-factor Pluggable.

With this site-wide information recorded, the next step is to install and document each Device. This includes
entering a <devname>, which is subsequently used to generate a fully qualified domain name for the device:
<devname>.<deployment>.<site>.aetherproject.net. The following fields are also filled in when
creating a Device:

• Site

• Rack & Rack Position

• Manufacturer

• Model

• Serial number

• Device Type

• MAC Addresses

Note there is typically both a primary and a management (e.g., BMC/IPMI) interface. One convenience
feature of Netbox is to use the Device Type as a template that sets the default naming of interfaces, power
connections, and other equipment model specific attributes.

Finally, the virtual interfaces for the Device must be specified, with its Label field set to the physical network
interface that it is assigned. IP addresses are then assigned to the physical and virtual interfaces we have de-
fined. The Management Server should always have the first IP address within each prefix, and by convention
they are assigned incrementally as follows:

• Management Server

– eno1 - site provided public IP address, or blank if DHCP provided

– eno2 - 10.0.0.1/25 (first of ADMIN) - set as primary IP

– bmc - 10.0.0.2/25 (next of ADMIN)

– mgmt800 - 10.0.0.129/25 (first of MGMT, on VLAN 800)

– fab801 - 10.0.1.1/25 (first of FABRIC, on VLAN 801)

• Management Switch

– gbe1 - 10.0.0.3/25 (next of ADMIN) - set as primary IP

• Fabric Switch

– eth0 - 10.0.0.130/25 (next of MGMT), set as primary IP

– bmc - 10.0.0.131/25

• Compute Server

– eth0 - 10.0.0.132/25 (next of MGMT), set as primary IP

– bmc - 10.0.0.4/25 (next of ADMIN)
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– qsfp0 - 10.0.1.2/25 (next of FABRIC)

– qsfp1 - 10.0.1.3/25

• Other Fabric devices (eNB, etc.)

– eth0 or other primary interface - 10.0.1.4/25 (next of FABRIC)

Once this data is entered into NetBox, it can be used to generate a rack diagram, similar to the one shown
in Figure 5.3, corresponding to the cabling diagram shown in Figure 5.2. Note that the diagram shows two
logical Deployments (Production and Development), co-located in one physical rack.

Figure 5.3.: NetBox rendering of rack configuration.

It is also possible to generate other useful specifications for the deployment, helping the technician confirm
the recorded logical specification matches the actual physical representation. For example, Figure 5.4 shows
the set of cables and how they connect the set of hardware in our example deployment.

If all of this seems like a tedious amount of detail, then you get the main point of this section. Everything
about automating the control and management of a cloud hinges on having complete and accurate data about
its resources. Keeping this information in sync with the reality of the physical infrastructure is often the
weakest link in this process. The only saving grace is that the information is highly structured, and tools like
NetBox help us codify this structure.
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Figure 5.4.: NetBox report of cabling.

5.1.2 3.1.2 Configure and Boot

After installing the hardware and recording the relevant facts about the installation, the next step is to con-
figure and boot the hardware so that it is “ready” for the automated procedures that follow. The goal is to
minimize manual configuration required to onboard physical infrastructure like that shown in Figure 5.2,
but zero-touch is a high bar. To illustrate, the bootstrapping steps needed to complete provisioning for our
example deployment currently include:

• Configure the Management Switch to know the set of VLANs being used.

• Configure the Management Server so it boots from a provided USB key.

• Run Ansible roles and playbooks needed to complete configuration onto the Management Server.

• Configure the Compute Servers so they boot from the Management Server (via iPXE).

• Configure the Fabric Switches so they boot from the Management Server (via Nginx).

• Configure the eNBs (mobile base stations) so they know their IP addresses.

These are all manual configuration steps, requiring either console access or entering information into a device
web interface, such that any subsequent configuration steps can be both fully automated and resilient. Note
that while these steps cannot be automated away, they do not necessarily have to be performed in the field;
hardware shipped to a remote site can first be prepped accordingly. Also note that care should be taken to
not overload this step with configuration that can be done later. For example, various radio parameters can
be set on the eNBs when it is physically installed, but those parameters will become settable through the
Management Platform once the cluster is brought online.

Manual configuration work done at this stage should be minimized, and most systems should use automated
means of configuration. For example, using DHCP pervasively with MAC reservations for IP address assign-
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ment instead of manual configuration of each interface allows for management to be zero-touch and simplifies
future reconfiguration.

The automated aspects of configuration are implemented as a set of Ansible roles and playbooks, which
in terms of the high-level overview shown in Figure 4.5 of Chapter 2, corresponds to the box representing
the “Zero-Touch Provision (System)”. Said another way, there is no off-the-shelf ZTP solution we can use
(i.e., someone has to write the playbooks), but the problem is greatly simplified by having access to all the
configuration parameters that NetBox maintains.

The general idea is as follows. For every network service (e.g., DNS, DHCP, iPXE, Nginx) and every per-
device subsystem (e.g., network interfaces, Docker) that needs to be configured, there is a corresponding
Ansible role and playbook.2 These configurations are applied to the Management Server during the manual
configuration stage summarized above, once the management network is online.

The Ansible playbooks install and configure the network services on the Management Server. The role of
DNS and DHCP are obvious. As for iPXE and Nginx, they are used to bootstrap the rest of the infrastructure.
The compute servers are configured by iPXE delivered over DHCP/TFTP, and then load the scripted OS
installation from a Nginx webserver. The fabric switches load their Stratum OS package from Nginx.

In many cases, the playbooks use parameters—such as VLANs, IP addresses, DNS names, and so
on—extracted from NetBox. Figure 5.5 illustrates the approach, and fills in a few details. For example, a
home-grown Python program (edgeconfig.py) extracts data from NetBox using the REST API and outputs
a corresponding set of YAML files, crafted to serve as input to Ansible, which creates yet more configuration
on the management and compute systems. One example of this is the Netplan file, which is used in Ubuntu
to manage network interfaces. More information about Ansible and Netplan can be found on their respective
web sites.

Further Reading

Ansible: Automation Platform.

Netplan: Network Configuration Abstraction Renderer.

While Figure 5.5 highlights how Ansible is paired with Netplan to configure kernel-level details, there is
also an Ansible playbook that installs Docker on each compute server and fabric switch, and then launches a
Docker container running a “finalize” image. This image makes calls into the next layer of the provisioning
stack, effectively signaling that the cluster is running and ready for further instructions. We are now ready to
describe that next layer of the stack.

2 We gloss over the distinction between roles and playbooks in Ansible, and focus on the general idea of there being a script that
runs with a set of input parameters.
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Figure 5.5.: Configuring network services and OS-level subsystems using NetBox data.

5.1.3 3.1.3 Provisioning API

As a result of the steps described so far, we can assume each server and switch is up and running, but we
still have a little work to do to prepare our bare-metal clusters for the next layer in the provisioning stack,
essentially establishing parity between the left- and right-hand sides of the hybrid cloud shown in Figure 5.1.
If you ask yourself “What would Google do?” this reduces to the task of setting up a GCP-like API for the
bare-metal edge clouds. This API primarily subsumes the Kubernetes API, but it goes beyond providing a
way to use Kubernetes to also include calls to manage Kubernetes.

In short, this “manage Kubernetes” task is to turn a set of interconnected servers and switches into a fully-
instantiated Kubernetes cluster. For starters, the API needs to provide a means to install and configure Ku-
bernetes on each physical cluster. This includes specifying which version of Kubernetes to run, selecting the
right combination of Container Network Interface (CNI) plugins (virtual network adapters), and connecting
Kubernetes to the local network (and any VPNs it might need). This layer also needs to provide a means to
set up accounts (and associated credentials) for accessing and using each Kubernetes cluster, and a way to
manage independent projects that are to be deployed on a given cluster (i.e., manage namespaces for multiple
applications).

As an example, Aether currently uses Rancher to manage Kubernetes on the bare-metal clusters, with one
centralized instance of Rancher being responsible for managing all the edge sites. This results in the config-
uration shown in Figure 5.6, which to emphasize Rancher’s scope, shows multiple edge clusters. Although
not shown in the Figure, the GCP-provided API, just like Rancher, also spans multiple physical sites (e.g.,
us-west1-a, europe-north1-b, asia-south2-c, and so on).

We conclude this discussion by noting that while we often treat Kubernetes as though it is an industry-wide
standard, that is not quite the reality of the situation. Each cloud provider offers its own customized version:

• Microsoft Azure offers the Azure Kubernetes Service (AKS)

• AWS offers the Amazon Elastic Kubernetes Service (EKS)
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Figure 5.6.: Provisioning in a hybrid cloud that includes an API layer for managing Kubernetes running on
multiple bare-metal clusters.

• Google Cloud offers the Google Kubernetes Engine (GKE)

• Aether edges run the Rancher-certified version of Kubernetes (RKE)

Although the CNCF (Cloud Native Computing Foundation)—the open source organization responsible for
shepherding the Kubernetes project—certifies these and other versions of Kubernetes, this only establishes
baseline compliance. Each version if free to enhance their offering beyond this baseline, and these enhance-
ments often take the form of additional features for provisioning and controlling a Kubernetes cluster. Our
job at the cloud management layer is to provide operators with a means to manage this heterogeneity. And
as we’ll see in Section 3.2, this is the primary challenge addressed by the Infrastructure-as-Code layer.

5.1.4 3.1.4 Provisioning VMs

We conclude our discussion of the steps required to provision physical machines by considering the implica-
tions of provisioning virtual machines, or VMs. That’s something that happens “behind the scenes” when you
request a Kubernetes cluster from AKS, EKS, or GKE, but that’s because the hyperscalers have the option of
layering their Kubernetes service on top of their Infrastructure-as-a-Service (IaaS). Do we need something
similar for the edge cloud we’re building?

Not necessarily. Because our goal is to support a curated set of edge services that provide value to our
enterprise users, and not to support Container-as-a-Service so untrusted third-parties can spin up whatever
applications they want, we do not need to manage VMs “as a service.” But we still may want to use VMs
as a way to isolate Kubernetes workloads on a limited number of physical servers. This can be done as a
provisioning step, akin to connecting and booting a physical machine, but using virtualization mechanisms
like KVM and Proxmox. There is no need for a full-fledged IaaS mechanism, such as OpenStack. These
VMs would then be recorded as first-class cloud resource in NetBox and the other tools described in this
section, no different from a physical machine.

The unanswered question is why one might decide to do that, considering that Kubernetes already allows us
to deploy multiple applications on a single cluster. One reason is to support fine-grained resource isolation,
making it possible to (a) ensure that each Kubernetes application receives the processor, memory, and storage
resources it needs to do its job, and (b) reduce the risk of information leaking between the applications. Sup-
pose, for example, that in addition to SD-Fabric, SD-RAN and SD-Core workloads that run (by default) on
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each edge site, we also want to run one or more other edge apps, such as the OpenVINO platform introduced
in Section 2.3. To ensure that there is no interference between these applications, we could dedicate a subset
of physical servers to each of them. Physical partitioning is a coarse-grained way to share the physical cluster.
Being able to “split” one or more servers between multiple uses—by instantiating VMs—gives the operator
more flexibility in allocating resources, which usually translates into requiring fewer overall resources. Note
that there are other ways to specify how cluster resources are shared between applications (which we will see
in Section 4.4), but the provisioning layer is one place where the issue can be addressed.

5.2 3.2 Infrastructure-as-Code

The provisioning interface for each of the Kubernetes variants just described includes a programmatic API,
a Command Line Interface (CLI), and a Graphical User Interface (GUI). If you try any of the tutorials we
recommended throughout this book, you’ll likely use one of the latter two. For operational deployments,
however, having a human operator interact with a CLI or GUI is problematic. This is not only because humans
are error-prone, but also because it’s nearly impossible to consistently repeat a sequence of configuration
steps. Being able to continuously repeat the process is at the heart of Lifecycle Management described in the
next chapter.

The solution is to find a declarative way of saying what your infrastructure is to look like—what set of
Kubernetes clusters (e.g., some running at the edges on bare-metal and some instantiated in GCP) are to
be instantiated, and how each is to be configured—and then automate the task of making calls against the
programmatic API to make it so. This is the essence of Infrastructure-as-Code, and as we’ve already said,
we use Terraform as our open source example.

Since Terraform specifications are declarative, the best way to understand them is to walk through a specific
example. In doing so, our goal isn’t to document Terraform (online documentation and step-by-step tutorials
are available for those those interested in more detail), but rather, to build some intuition about the role this
layer plays in managing a cloud.

Further Reading

Terraform Documentation.

Terraform Getting Started Tutorials.

To make sense of the example, the main thing you need to know about the Terraform configuration language
is that it provides a means to both (1) specify templates for different kinds of resources (these are .tf files),
and (2) fill in the variables for specific instances of those resource templates (these are .tfvars files).
Then given a set of .tf and tfvars files, Terraform implements a two-stage process. In the first stage it
constructs an execution plan, based on what has changed since the previous plan it executed. In the second
stage, Terraform carries out the sequence of tasks required to bring the underlying infrastructure “up to spec”
with the latest definition. Note that our job, for now, is the write these specification files, and check them
into the Config Repo. Terraform gets invoked as part of the CI/CD pipeline described in Chapter 4.

Now to the specific files. At the top-most level, the operator defines the set of providers they plan to incorpo-
rate into their infrastructure. We can think of each provider as corresponding to a cloud backend, including
the corresponding provisioning API depicted in Figure 5.6. In our example, we show only two providers:
the Rancher-managed edge clusters and the GCP-managed centralized clusters. Note that the example file
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declares a set of relevant variables for each provider (e.g., url, access-key), which are “filled in” in by
instance-specific variable files described next.

terraform {
required_version = ">= 0.13"
required_providers {
rancher2 = {

source = "rancher/rancher2"
version = "= 1.15.1"

}
google = {

source = "hashicorp/google"
version = "~> 3.65.0"

}
null = {

source = "hashicorp/null"
version = "~> 2.1.2"

}
}

}

variable "rancher" {
description = "Rancher credential"
type = object({
url = string
access_key = string
secret_key = string

})
}

variable "gcp_config" {
description = "GCP project and network configuration"
type = object({
region = string
compute_project = string
network_project = string
network_name = string
subnet_name = string

})
}

provider "rancher2" {
api_url = var.rancher.url
access_key = var.rancher.access_key
secret_key = var.rancher.secret_key

}

(continues on next page)
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(continued from previous page)

provider "google" {
# Provide GCP credential using GOOGLE_CREDENTIALS environment variable
project = var.gcp_config.compute_project
region = var.gcp_config.region

}

The next step is to fill in the details (define values) for the actual set of clusters we want to provision. Let’s
look at two examples, corresponding to the two providers we just specified. The first shows a GCP-provided
cluster (named amp-gcp) that is to host the AMP workload. (There’s a similar sdcore-gcp that hosts an
instance of the SD-Core.) The labels associated with this particular cluster (e.g., env = "production")
establish linkage between Terraform (which assigns the label to each cluster it instantiates) and other layers
of the management stack (which selectively take different actions based on the associated labels). We’ll see
an example of these labels being used in Section 4.4.

cluster_name = "amp-gcp"
cluster_nodes = {

amp-us-west2-a = {
host = "10.168.0.18"
roles = ["etcd", "controlplane", "worker"]
labels = []
taints = []

},
amp-us-west2-b = {
host = "10.168.0.17"
roles = ["etcd", "controlplane", "worker"]
labels = []
taints = []

},
amp-us-west2-c = {
host = "10.168.0.250"
roles = ["etcd", "controlplane", "worker"]
labels = []
taints = []

}
}
cluster_labels = {

env = "production"
clusterInfra = "gcp"
clusterRole = "amp"
k8s = "self-managed"
backup = "enabled"

}

The second example shows an edge cluster (named ace-X) to be instantiated at Site X. As shown in the
example code, this is a bare-metal cluster consisting of five servers and four switches (two leaf switches
and two spine switches). The address for each device must match the one assigned during the hardware-
provisioning stage outlined in Section 3.1. Ideally, the NetBox (and related) tool chain described in that
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section would auto-generate these Terraform variables files, but in practice, manually entering the data is
often still necessary.

cluster_name = "ace-X"
cluster_nodes = {

leaf1 = {
user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.133"
roles = ["worker"]
labels = ["node-role.aetherproject.org=switch"]
taints = ["node-role.aetherproject.org=switch:NoSchedule"]

},
leaf2 = {
user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.137"
roles = ["worker"]
labels = ["node-role.aetherproject.org=switch"]
taints = ["node-role.aetherproject.org=switch:NoSchedule"]

},
spine1 = {
user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.131"
roles = ["worker"]
labels = ["node-role.aetherproject.org=switch"]
taints = ["node-role.aetherproject.org=switch:NoSchedule"]

},
spine2 = {
user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.135"
roles = ["worker"]
labels = ["node-role.aetherproject.org=switch"]
taints = ["node-role.aetherproject.org=switch:NoSchedule"]

},
server-1 = {
user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.138"
roles = ["etcd", "controlplane", "worker"]
labels = []
taints = []

},
server-2 = {
user = "terraform"

(continues on next page)
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(continued from previous page)

private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.139"
roles = ["etcd", "controlplane", "worker"]
labels = []
taints = []

},
server-3 = {

user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.140"
roles = ["etcd", "controlplane", "worker"]
labels = []
taints = []

},
server-4 = {

user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.141"
roles = ["worker"]
labels = []
taints = []

},
server-5 = {

user = "terraform"
private_key = "~/.ssh/id_rsa_terraform"
host = "10.64.10.142"
roles = ["worker"]
labels = []
taints = []

}
}
cluster_labels = {
env = "production"
clusterInfra = "bare-metal"
clusterRole = "ace"
k8s = "self-managed"
coreType = "4g"
upfType = "up4"

}

The final piece of the puzzle is to to fill in the remaining details about exactly how each Kubernetes cluster is to
be instantiated. In this case, we show just the RKE-specific module used to configure the edge clusters, where
most of the details are straightforward if you understand Kubernetes. For example, the module specifies that
each edge cluster should load the calico and multus CNI plugins. It also defines how to invoke kubectl
to configure Kubernetes according to these specifications. Less familiar, all references to SCTPSupport
indicate whether or not that particular Kubernetes cluster needs to support SCTP, a Telco-oriented network
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protocol that is not included in a vanilla Kubernetes deployment, but is needed by the SD-Core.

terraform {
required_providers {
rancher2 = {

source = "rancher/rancher2"
}
null = {

source = "hashicorp/null"
version = "~> 2.1.2"

}
}

}

resource "rancher2_cluster" "cluster" {
name = var.cluster_config.cluster_name

enable_cluster_monitoring = false
enable_cluster_alerting = false

labels = var.cluster_labels

rke_config {
kubernetes_version = var.cluster_config.k8s_version

authentication {
strategy = "x509"

}

monitoring {
provider = "none"

}

network {
plugin = "calico"

}

services {
etcd {
backup_config {

enabled = true
interval_hours = 6
retention = 30

}
retention = "72h"
snapshot = false

}
(continues on next page)

48 Chapter 5. Chapter 3: Resource Provisioning



Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

(continued from previous page)

kube_api {
service_cluster_ip_range = var.cluster_config.k8s_cluster_ip_range
extra_args = {
feature-gates = "SCTPSupport=True"

}
}

kubelet {
cluster_domain = var.cluster_config.cluster_domain
cluster_dns_server = var.cluster_config.kube_dns_cluster_ip
fail_swap_on = false
extra_args = {

cpu-manager-policy = "static"
kube-reserved = "cpu=500m,memory=256Mi"
system-reserved = "cpu=500m,memory=256Mi"
feature-gates = "SCTPSupport=True"

}
}

kube_controller {
cluster_cidr = var.cluster_config.k8s_pod_range
service_cluster_ip_range = var.cluster_config.k8s_cluster_ip_range
extra_args = {

feature-gates = "SCTPSupport=True"
}

}

scheduler {
extra_args = {

feature-gates = "SCTPSupport=True"
}

}

kubeproxy {
extra_args = {

feature-gates = "SCTPSupport=True"
proxy-mode = "ipvs"

}
}

}
addons_include = ["https://raw.githubusercontent.com/k8snetworkplumbingwg/

→˓multus-cni/release-3.7/images/multus-daemonset.yml"]
addons = var.addon_manifests

}
}

(continues on next page)
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resource "null_resource" "nodes" {
triggers = {
cluster_nodes = length(var.nodes)

}

for_each = var.nodes

connection {
type = "ssh"

bastion_host = var.bastion_host
bastion_private_key = file(var.bastion_private_key)
bastion_user = var.bastion_user

user = each.value.user
host = each.value.host
private_key = file(each.value.private_key)

}

provisioner "remote-exec" {
inline = [<<EOT

${rancher2_cluster.cluster.cluster_registration_token[0].node_command} \
${join(" ", formatlist("--%s", each.value.roles))} \
${join(" ", formatlist("--taints %s", each.value.taints))} \
${join(" ", formatlist("--label %s", each.value.labels))}
EOT

]
}

}

resource "rancher2_cluster_sync" "cluster-wait" {
cluster_id = rancher2_cluster.cluster.id

provisioner "local-exec" {
command = <<EOT

kubectl set env daemonset/calico-node \
--server ${yamldecode(rancher2_cluster.cluster.kube_config).clusters[0].

→˓cluster.server} \
--token ${yamldecode(rancher2_cluster.cluster.kube_config).users[0].user.

→˓token} \
--namespace kube-system \
IP_AUTODETECTION_METHOD=${var.cluster_config.calico_ip_detect_method}

EOT
}

}
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There are other loose ends that need to be tied up, such as defining the VPN to be used to connect edge clusters
to their counterparts in GCP, but the above examples are sufficient to illustrate the role Infrastructure-as-Code
plays in the cloud management stack. The key takeaway is that everything Terraform handles could have
been done by a human operator making a sequence of CLI calls (or GUI clicks) on the backend Provisioning
APIs, but experience has shown that approach to be error-prone and difficult to make consistently repeatable.
Starting with declarative language and auto-generating the right sequence of API calls is a proven way to
overcome that problem.

We conclude by drawing attention to the fact that while we now have a declarative specification for our cloud
infrastructure, which we refer to as the Aether Platform, these specification files are yet another software
artifact that we check into the Config Repo. This is what we mean by Infrastructure-as-Code: infrastructure
specifications are checked into a repo and version-controlled like any other code. This repo, in turn, feeds
the lifecycle management pipeline described in the next chapter. The physical provisioning steps described
in Section 3.1 happen “outside” the pipeline (which is why we don’t just fold resource provisioning into
Lifecycle Management), but it is fair to think of resource provisioning as “Stage 0” of lifecycle management.

5.3 3.3 Platform Definition

The art of defining a system architecture, in our case a management framework for a hybrid cloud, is deciding
where to draw the line between what’s included inside the platform and what is considered an application
running on top of the platform. For Aether, we have decided to include SD-Fabric inside the platform (along
with Kubernetes), with SD-Core and SD-RAN treated as applications, even though all three are implemented
as Kubernetes-based microservices. One consequence of this decision is that SD-Fabric is initialized as part
of the provisioning system described in this chapter (with NetBox, Ansible, Rancher, and Terraform playing
a role), whereas SD-Core and SD-RAN are deployed using the application-level mechanisms described in
Chapter 4.

There may also be other edge applications running as Kubernetes workloads, which complicates the story
because from their perspective, all of Aether (including the 5G connectivity that SD-Core and SD-RAN
implements) is assumed to be part of the platform. In other words, Aether draws two lines, one demarcat-
ing Aether’s base platform (Kubernetes plus SD-Fabric) and a second demarcating the Aether PaaS (which
includes SD-Core and SD-RAN running on top of the platform, plus AMP managing the whole system).
The distinction between “base platform” and “PaaS” is subtle, but essentially corresponds to the difference
between a software stack and a managed service, respectively.

In some respects this is just a matter of terminology, which is certainly important, but the relevance to our
discussion is that because we have multiple overlapping mechanisms at our disposal, giving us more than
one way to solve each engineering problem we encounter, it is easy to end up with an implementation that
unnecessarily conflates separable concerns. Being explicit and consistent about what is platform and what
is application is a prerequisite for a sound overall design. It is also important to recognize the difference
between an internal engineering decision (e.g., what mechanism is used to deploy a given component), and
an externally-visible architectural decision (e.g., what functionality to expose through a public API).
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CHAPTER

SIX

CHAPTER 4: LIFECYCLE MANAGEMENT

Lifecycle Management is concerned with updating and evolving a running system over time. We have carved
out the bootstrapping step of provisioning the hardware and installing the base software platform (Chapter
3), and so now we turn our attention to continually upgrading the software running on top of that platform.
And as a reminder, we assume the base platform includes Linux running on each server and switch, plus
Docker, Kubernetes, and Helm, with SD-Fabric controlling the network.

While we could take a narrow view of Lifecycle Management, and assume the software we want to roll out
has already gone through an off-line integration-and-testing process (this is the traditional model of vendors
releasing a new version of their product), we take a more expansive approach that starts with the development
process—the creation of new features and capabilities. Including the “innovation” step closes the virtuous
cycle depicted in Figure 6.1, which the cloud industry has taught us leads to greater feature velocity.

Figure 6.1.: Virtuous cycle with the goal of improving feature velocity.

Of course, not every enterprise has the same army of developers at their disposal that cloud providers do,
but that does not shut them out of this opportunity. The innovation can come from many sources, including
open source, so the real objective is to democratize the integration and deployment end of the pipeline. This
is precisely the goal of the Lifecycle Management subsystem described in this chapter.

6.1 4.1 Design Overview

Figure 6.2 gives an overview of the pipeline/toolchain that make up the two halves of Lifecycle Manage-
ment—Continuous Integration (CI) and Continuous Deployment (CD)—expanding on the high-level intro-
duction presented in Chapter 2. The key thing to focus on is the Image and Config Repos in the middle. They
represent the “interface” between the two halves: CI produces Docker Images and Helm Charts, storing them
in the respective Repositories, while CD consumes Docker Images and Helm Charts, pulling them from the
respective Repositories.

The Config Repo also contains declarative specifications of the infrastructure artifacts produced by Resource
Provisioning, specifically, the Terraform templates and variable files.1 While the “hands-on” and “data entry”

1 We use the term “Config Repo” generically to denote one or more repositories storing all the configuration-related files. In

53



Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

Figure 6.2.: Overview of the CI/CD pipeline.

aspects of Resource Provisioning described in Section 3.1 happen outside the CI/CD pipeline, the ultimate
output of provisioning is the Infrastructure-as-Code that gets checked into the Config Repo. These files are
input to Lifecycle Management, which implies that Terraform gets invoked as part of CI/CD whenever these
files change. In other words, CI/CD keeps both the software-related components in the underlying cloud
platform and the microservice workloads that run on top of that platform up to date.

Continuous Delivery vs Deployment

You will also hear CD refer to “Continuous Delivery” instead of “Continuous Deployment”, but we are
interested in the complete end-to-end process, so CD will always imply the latter in this book. But keep
in mind that “continuous” does not necessarily mean “instantaneous”; there can be a variety of gating
functions injected into the CI/CD pipeline to control when and how upgrades get rolled out. The important
point is that all the stages in the pipeline are automated.

So what exactly does “Continuous Delivery” mean? Arguably, it’s redundant when coupled with “Con-
tinuous Integration” since the set of artifacts being produced by the CI half of the pipeline (e.g., Docker
images) is precisely what’s being delivered. There is no “next step” unless you also deploy those artifacts.
It’s hair-splitting, but some would argue CI is limited to testing new code and Continuous Delivery corre-
sponds to the final “publish the artifact” step. For our purposes, we lump “publish the artifact” into the
CI half of the pipeline.

There are three takeaways from this overview. The first is that by having well-defined artifacts passed between
CI and CD (and between Resource Provisioning and CD), all three subsystems are loosely coupled, and able to
perform their respective tasks independently. The second is that all authoritative state needed to successfully
build and deploy the system is contained within the pipeline, specifically, as declarative specifications in the
Config Repo. This is the cornerstone of Configuration-as-Code (also sometimes called GitOps), the cloud
native approach to CI/CD that we are describing in this book. The third is that there is an opportunity for
operators to apply discretion to the pipeline, as denoted by the “Deployment Gate” in the Figure, controlling
what features get deployed when. This topic is discussed in the sidebar, as well as at other points throughout

practice, there might be one repo for Helm Charts and another for Terraform Templates.
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this chapter.

Further Reading

Weaveworks. Guide to GitOps.

The third repository shown in Figure 6.2 is the Code Repo (on the far left). Although not explicitly indicated,
developers are continually checking new features and bug fixes into this repo, which then triggers the CI/CD
pipeline. A set of tests and code reviews are run against these check-ins, with the output of those tests/reviews
reported back to developers, who modify their patch sets accordingly. (These develop-and-test feedback loops
are implied by the dotted lines in Figure 6.2.)

The far right of Figure 6.2 shows the set of deployment targets, with Staging and Production called out as
two illustrative examples. The idea is that a new version of the software is deployed first to a set of Staging
clusters, where it is subjected to realistic workloads for a period of time, and then rolled out to the Production
clusters once the Staging deployments give us confidence that the upgrade is reliable.

This is a simplified depiction of what happens in practice. In general, there can be more than two distinct
versions of the cloud software deployed at any given time. One reason this happens is that upgrades are
typically rolled out incrementally (e.g., a few sites at a time over an extended period of time), meaning that
even the production system plays a role in “staging” new releases. For example, a new version might first be
deployed on 10% of the production machines, and once it is deemed reliable, is then rolled out to the next
25%, and so on. The exact rollout strategy is a controllable parameter, as described in more detail in Section
4.4.

Finally, two of the CI stages shown in Figure 6.2 identify a Testing component. One is a set of component-
level tests that are run against each patch set checked into the Code Repo. These tests gate integration; fully
merging a patch into the Code Repo requires first passing this preliminary round of tests. Once merged, the
pipeline runs a build across all the components, and a second round of testing happens on a Quality Assurance
(QA) cluster. Passing these tests gate deployment, but note that testing also happens in the Staging clusters,
as part of the CD end of the pipeline. One might naturally wonder about the Production clusters. How do we
continue to test the software after it is running in production? That happens, of course, but we tend to call it
Monitoring & Telemetry (and subsequent diagnostics) rather than testing. This is the subject of Chapter 6.

We explore each of the stages in Figure 6.2 in more detail in the sections that follow, but as we dig into
the individual mechanisms, it is helpful to keep a high-level, feature-centric perspective in the back of our
minds. After all, the CI/CD pipeline is just an elaborate mechanism to help us manage the set of features
we want our cloud to support. Each feature starts in development, which corresponds to everything left of
the Integration Gate in Figure 6.2. Once a candidate feature is mature enough to be officially accepted into
the main branch of the code repo (i.e., merged), it enters an integration phase, during which it is evaluated
in combination with all the other candidate features, both new and old. Finally, whenever a given subset of
features are deemed stable and have demonstrated value, they are deployed and finally run in production.
Because of the centrality of testing throughout this entire lifetime of a set of features, we start there.
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6.2 4.2 Testing Strategy

Our goal for Lifecycle Management is to improve feature velocity, but that always has to be balanced against
delivering high-quality code—software that is reliable, scales, and meets performance requirements. Ensur-
ing code quality requires that it be subjected to a battery of tests, but the linchpin for doing so “at speed”
is the effective use of automation. This section introduces an approach to test automation, but we start by
talking about the overall testing strategy.

The best-practice for testing in the Cloud/DevOps environment is to adopt a Shift Left strategy, which in-
troduces tests early in the development cycle, that is, on the left side of the pipeline shown in Figure 6.2.
To apply this principle, you first have to understand what types of tests you need. Then you can set up the
infrastructure required to automate those tests.

6.2.1 4.2.1 Categories of Tests

With respect to the types of tests, there is a rich vocabulary for talking about QA, but unfortunately, the
definitions are often vague, overlapping, and not always uniformly applied. The following gives a simple
taxonomy that serves our purposes, with different categories of tests organized according to the three stages
of the CI/CD pipeline where they happen (relative to Figure 6.2):

• Integration Gate: These tests are run against every attempt to check in a patch set, and so must
complete quickly. This means they are limited in scope. There are two categories of pre-merge tests:

– Unit Tests: Developer-written tests that narrowly test a single module. The goal is to exercise as
many code paths as possible by invoking “test calls” against the module’s public interface.

– Smoke Tests: A form of functional testing, typically run against a set of related modules, but in
a shallow/superficial way (so they can run quickly). The etymology of the term “smoke tests” is
said to come from hardware tests, as in, “does smoke come out of the box when you turn it on?”

• QA Cluster: These tests are run periodically (e.g., once day, once a week) and so can be more ex-
tensive. They typically test whole subsystems, or in some cases, the entire system. There are two
categories of post-merge/pre-deploy tests:

– Integration Tests: Ensures one or more subsystems function correctly, and adheres to known in-
variants. These tests exercise the integration machinery in addition to end-to-end (cross-module)
functionality.

– Performance Tests: Like functional tests in scope (i.e., at the subsystem level), but they mea-
sure quantifiable performance parameters, including the ability to scale the workload, rather than
correctness.

• Staging Cluster: Candidate releases are run on the Staging cluster for an extensive period of time
(e.g., multiple days) before being rolled out to Production. These tests are run against a complete
and fully integrated system, and are often used to uncover memory leaks and other time-variant and
workload-variant issues. There is just one category of tests run in this stage:

– Soak Tests: Sometimes referred to as Canary Tests, these require realistic workloads be placed
on a complete system, through a combination of artificially generated traffic and requests from
real users. Because the full system is integrated and deployed, these tests also serve to validate
the CI/CD mechanisms, including for example, the specs checked into the Config Repo.
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Figure 6.3 summaries the sequence of tests, highlighting the relationship among them across the lifecycle
timeline. Note that the leftmost tests typically happen repeatedly as part of the development process, while
the rightmost tests are part of the ongoing monitoring of a production deployment. For simplicity, the figure
shows the Soak tests as running before deployment, but in practice, there is likely a continuum whereby new
versions of the system are incrementally rolled out.

Figure 6.3.: Sequence of tests along the feature timeline, as implemented by the CI/CD pipeline.

One of the challenges in crafting a testing strategy is deciding whether a given test belongs in the set of
Smoke tests that gate merging a patch, or the set of Integration tests that happen after a patch is merged into
the code repo, but before it is deployed. There is no hard-and-fast rule; it’s a balancing act. You want to
test new software as early as you realistically can, but full integration takes both time and resources (i.e., a
realistic platform for running the candidate software).

Related to this trade-off, testing infrastructure requires a combination of virtual resources (e.g., VMs that are
pre-configured with much of the underlying platform already installed) and physical resources (e.g., small
clusters that faithfully represent the eventual target hardware). Again, it’s not a hard-and-fast rule, but early
(Smoke) tests tend to use virtual resources that are pre-configured, while later (Integration) test tend to run
on representative hardware or clean VMs, with the software built from scratch.

You will also note that we did not call out Regression tests in this simple taxonomy, but our view is that
Regression tests are designed to ensure that a bug is not re-introduced into the code once it has been iden-
tified and fixed, meaning it is a common source of new tests that can be added to Unit, Smoke, Integration,
Performance, or Soak tests. Most tests, in practice, are Regression tests, independent of where they run in
the CI/CD pipeline.
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6.2.2 4.2.2 Testing Framework

With respect to a testing framework, Figure 6.4 shows an illustrative example drawn from Aether. Specifics
will vary substantially, depending on the kind of functionality you need to test. In Aether, the relevant com-
ponents are shown on the right—rearranged to highlight top-down dependencies between subsystems—with
the corresponding test-automation tool shown on the left. Think of each of these as a framework for a domain-
specific class of tests (e.g., NG40 puts a 5G workload on SD-Core and SD-RAN, while TestVectors injects
packet traffic into the switches).

Figure 6.4.: Example Testing Frameworks used in Aether.

Some of the frameworks shown in Figure 6.4 were co-developed with the corresponding software compo-
nent. This is true of TestVectors and TestON, which put customized workloads on Stratum (SwitchOS) and
ONOS (NetworkOS), respectively. Both are open source, and hence available to pursue for insights into
the challenges of building a testing framework. In contrast, NG40 is a proprietary framework for emulating
3GPP-compliant cellular network traffic, which due to the complexity and value in demonstrating adherence
to the 3GPP standard, is a closed, commercial product.

Selenium and Robot are the most general of the five examples. Each is an open source project with an active
developer community. Selenium is a tool for automating the testing of web applications, while Robot is a
more general tool for generating requests to any well-defined interface. Both systems are frameworks in the
sense that developers can write extensions, libraries, drivers, and plugins to test specific features of the User
Portal and the Runtime API, respectively.2 They both illustrate the purpose of a testing framework, which
is to provide a means to (1) automate the execution of a range of tests; (2) collect and archive the resulting

2 Selenium is actually available as a library that can be called from within the Robot framework, which makes sense when you
consider that a web GUI invokes HTTP operations on a set of HTML-defined elements, such as textboxes, buttons, drop-down
menus, and so on.
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test results; and (3) evaluate and analyze the test results. In addition, is it necessary for such frameworks to
be scalable when they are used to test systems that are themselves intended to be scalable, as is the case for
cloud services.

Finally, as discussed in the previous subsection, each of these testing frameworks requires a set of resources.
These resources are for running both the suite of tests (which generates workload) and the subsystem(s) being
tested. For the latter, reproducing a full replica of the target cluster for every development team is ideal, but
it is more cost-effective to implement virtual environments that can be instantiated on-demand in a cloud.
Fortunately, because the software being developed is containerized and Kubernetes can run in a VM, virtual
testing environments are straightforward to support. This means dedicated hardware can be reserved for
less-frequent (e.g., daily) integration tests.

6.3 4.3 Continuous Integration

The Continuous Integration (CI) half of Lifecycle Management is all about translating source code checked
in by developers into a deployable set of Docker Images. As discussed in the previous section, this is largely
an exercise in running a set of tests against the code—first to test if it is ready to be integrated and then to test
if it was successfully integrated—where the integration itself is entirely carried out according to a declara-
tive specification. This is the value proposition of the microservices architecture: each of the components
is developed independently, packaged as a container (Docker), and then deployed and interconnected by a
container management system (Kubernetes) according to a declarative integration plan (Helm).

But this story overlooks a few important details that we now discuss, in part by filling in some specific
mechanisms.

6.3.1 4.3.1 Code Repositories

Code Repositories (of which GitHub and Gerrit are two examples), typically provide a means to tentatively
submit a patch set, triggering a set of static checks (e.g., passes linter, license, and CLA checks), and giving
code reviewers a chance to inspect and comment on the code. This mechanism also provides a means to
trigger the build-integrate-test processes discussed next. Once all such checks complete to the satisfaction
of the engineers responsible for the affected modules, the patch set is merged. This is all part of the well-
understood software development process, and so we do not discuss it further. The important takeaway for
our purposes is that there is a well-defined interface between code repositories and subsequent stages of the
CI/CD pipeline.

6.3.2 4.3.2 Build-Integrate-Test

The heart of the CI pipeline is a mechanism for executing a set of processes that (a) build the component(s)
impacted by a given patch set, (b) integrate the resulting executable images (e.g, binaries) with other images
to construct larger subsystems, (c) run a set of tests against those integrated subsystems and post the results,
and (d) optionally publish new deployment artifacts (e.g, Docker images) to the downstream image repository.
This last step happens only after the patch set has been accepted and merged into the repo (which also triggers
the Build stage in Figure 6.2 to run). Importantly, the manner in which images are built and integrated for
testing is exactly the same as the way they are built and integrated for deployment. The design principle is
that there are no special cases, just different “off-ramps” for the end-to-end CI/CD pipeline.
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There is no topic on which developers have stronger opinions than the merits (and flaws) of different build
tools. Old-school C coders raised on Unix prefer Make. Google developed Bazel, and made it available as
open source. The Apache Foundation released Maven, which evolved into Gradle. We prefer to not pick sides
in this unwinnable debate, but instead acknowledge that different teams will pick different build tools for their
individual projects (which we’ve been referring to in generic terms as subsystems), and we will employ a
simple second-level tool to integrate the output of all those sophisticated first-level tools. Our choice for the
second-level mechanism is Jenkins, a job automation tool that system admins have been using for years, but
which has recently been adapted and extended to automate CI/CD pipelines.

Further Reading

Jenkins.

At a high level, Jenkins is little more than a mechanism that executes a script, called a job, in response to
some trigger. Like many of the tools described in this book, Jenkins has a graphical dashboard that can be
used to create, execute, and view the results of a set of jobs, but this is mostly useful for simple examples.
Because Jenkins plays a central role in our CI pipeline, it is managed like all the other components we are
building—via a collection of declarative specification files that are checked into a repo. The question, then,
is exactly what do we specify?

Jenkins provides a scripting language, called Groovy, that can be used to define a Pipeline consisting of a
sequence of Stages. Each stage executes some task and tests whether it succeeded or failed. In principle then,
you could define a single CI/CD pipeline for the entire system. It would start with “Build” stage, followed
by a “Test” stage, and then conditional upon success, conclude with a “Deliver” stage. But this approach
doesn’t take into account the loose coupling of all the components that go into building a cloud. Instead,
what happens in practice is that Jenkins is used more narrowly to (1) build and test individual components,
both before and after they are merged into the code repository; (2) integrate and test various combinations of
components, for example, on a nightly basis; and (3) under limited conditions, push the artifact that has just
been built (e.g., a Docker Image) to the Image Repo.

This is a non-trivial undertaking, and so Jenkins supports tooling to help construct jobs. Specifically, Jenkins
Job Builder (JJB) processes declarative YAML files that “parameterize” the Pipeline definitions written in
Groovy, producing the set of jobs that Jenkins then runs. Among other things, these YAML files specify the
triggers—such as a patch being checked into the code repo—that launch the pipeline.

Exactly how developers use JJB is an engineering detail, but in Aether, the approach is for each major compo-
nent to define three or four different Groovy-based pipelines, each of which you can think of as corresponding
to one of the top-level stages in the overall CI/CD pipeline shown in Figure 6.2. That is, one Groovy pipeline
corresponds to pre-merge build and test, one for post-merge build and test, one for integrate and test, and
one for publish artifact. Each major component also defines a collection of YAML files that link component-
specific triggers to one of the pipelines, along with the associated set of parameters for that pipeline. The
number of YAML files (and hence triggers) varies from component to component, but one common example
is a specification to publish a new Docker image, triggered by a change to a VERSION file stored in the code
repo. (We’ll see why in Section 4.5.)

As an illustrative example, the following is from a Groovy script that defines the pipeline for testing the
Aether API, which as we’ll see in the next chapter, is auto-generated by the Runtime Control subsystem.
We’re interested in the general form of the pipeline, so omit most of the details, but it should be clear from
the example what each stage does. (Recall that Kind is Kubernetes in Docker.) The one stage fully depicted in

60 Chapter 6. Chapter 4: Lifecycle Management

https://www.jenkins.io/doc/


Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

the example invokes the Robot testing framework introduced in Section 4.2.2, with each invocation exercising
a different feature of the API. (To improve readability, the example does not show the output, logging, and
report arguments to Robot, which collect the results.)

pipeline {
...

stages {
stage("Cleanup"){

...
}
stage("Install Kind"){

...
}
stage("Clone Test Repo"){

...
}
stage("Setup Virtual Environment"){

...
}
stage("Generate API Test Framework and API Tests"){

...
}
stage("Run API Tests"){

steps {
sh """

mkdir -p /tmp/robotlogs
cd ${WORKSPACE}/api-tests
source ast-venv/bin/activate; set -u;
robot ${WORKSPACE}/api-tests/ap_list.robot || true
robot ${WORKSPACE}/api-tests/application.robot || true
robot ${WORKSPACE}/api-tests/connectivity_service.robot ||␣

→˓true
robot ${WORKSPACE}/api-tests/device_group.robot || true
robot ${WORKSPACE}/api-tests/enterprise.robot || true
robot ${WORKSPACE}/api-tests/ip_domain.robot || true
robot ${WORKSPACE}/api-tests/site.robot || true
robot ${WORKSPACE}/api-tests/template.robot || true
robot ${WORKSPACE}/api-tests/traffic_class.robot || true
robot ${WORKSPACE}/api-tests/upf.robot || true
robot ${WORKSPACE}/api-tests/vcs.robot || true

"""
}

}
}

...
}

One thing to notice is that this is another example of a tool using generic terminology in a specific way, which
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does not align with our conceptual use. Each conceptual stage in Figure 6.2 is implemented by one or more
Groovy-defined pipelines, each of which consists of a sequence of Groovy-defined stages. And as we can
see in this example, these Groovy stages are quite low-level.

This particular pipeline is part of the post-build QA testing stage shown in Figure 6.2, and so is invoked by
a time-based trigger. The following snippet of YAML is an example of a job template that specifies such a
trigger. Note that the value of the name attribute is what you would see if you looked at the set of jobs in the
Jenkins dashboard.

- job-template:
id: aether-api-tests
name: 'aether-api-{api-version}-tests-{release-version}'
project-type: pipeline
pipeline-file: 'aether-api-tests.groovy'
...
triggers:

- timed: |
TZ=America/Los_Angeles
H {time} * * *

...

To complete the picture, the follow code snippet from another YAML file shows how a repo-based trigger is
specified. This example executes a different pipeline (not shown), and corresponds to a pre-merge test that
runs when a developer submits a candidate patch set.

- job-template:
id: 'aether-patchset'
name: 'aether-verify-{project}{suffix}'
project-type: pipeline
pipeline-script: 'aether-test.groovy'
...
triggers:

- gerrit:
server-name: '{gerrit-server-name}'
dependency-jobs: '{dependency-jobs}'
trigger-on:
- patchset-created-event:

exclude-drafts: true
exclude-trivial-rebase: false
exclude-no-code-change: true

- draft-published-event
- comment-added-contains-event:

comment-contains-value: '(?i)^.*recheck$'
...

The important takeaway from this discussion is that there is no single or global CI job. There are many per-
component jobs that independently publish deployable artifacts when conditions dictate. Those conditions
include: (1) the component passes the required tests, and (2) the component’s version indicates whether or
not a new artifact is warranted. We have already talked about the testing strategy in Section 4.2 and we
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describe the versioning strategy in Section 4.5. These two concerns are at the heart of realizing a sound
approach to Continuous Integration. The tooling—in our case Jenkins—is just a means to that end.

6.4 4.4 Continuous Deployment

We are now ready to act on the configuration specs checked into the Config Repo, which includes both the set
of Terraform Templates that specify the underlying infrastructure (we’ve been calling this the cloud platform)
and the set of Helm Charts that specify the collection of microservices (sometimes called applications) that
are to be deployed on that infrastructure. We already know about Terraform from Chapter 3: it’s the agent
that actually “acts on” the infrastructure-related forms. For its counterpart on the application side we use an
open source project called Fleet.

Figure 6.5 shows the big picture we are working towards. Notice that both Fleet and Terraform depend on the
Provisioning API exported by each backend cloud provider, although roughly speaking, Terraform invokes
the “manage Kubernetes” aspects of those APIs, and Fleet invokes the “use Kubernetes” aspects of those
APIs. Consider each in turn.

Figure 6.5.: Relationship between the main CD agents (Terraform and Fleet) and the backend Kubernetes
clusters.

The Terraform side of Figure 6.5 is responsible for deploying (and configuring) the latest platform level
software. For example, if the operator wants to add a server (or VM) to a given cluster, upgrade the version
of Kubernetes, or change the CNI plug-in Kubernetes uses, the desired configuration is specified in the
Terraform config files. (Recall that Terraform computes the delta between the existing and desired state, and
executes the calls required to bring the former in line with the latter.) Anytime new hardware is added to an
existing cluster, the corresponding Terraform file is modified accordingly and checked into the Config Repo,
triggering the deployment job. We do not reiterate the mechanistic aspect of how platform deployments
are triggered, but it uses exactly the same set of Jenkins machinery described in Section 4.3.2, except now
watching for changes to Terraform Forms checked into the Config Repo.

The Fleet side of Figure 6.5 is responsible for installing the collection of microservices that are to run on
each cluster. These microservices, organized as one or more applications, are specified by Helm Charts. If

6.4. 4.4 Continuous Deployment 63



Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

we were trying to deploy a single Chart on just one one Kubernetes cluster, then we’d be done: Helm is
exactly the right tool to carry out that task. The value of Fleet is that it scales up that process, helping us
manage the deployment of multiple charts across multiple clusters. (Fleet is a spin-off from Rancher, but is
an independent mechanism that can be used directly with Helm.)

Further Reading

Fleet: GitOps at Scale.

Fleet defines three concepts that are relevant to our discussion. The first is a Bundle, which defines the
fundamental unit of what gets deployed. In our case, a Bundle is equivalent to a set of one or more Helm
Charts. The second is a Cluster Group, which identifies a set of Kubernetes clusters that are to be treated
in an equivalent way. In our case, the set of all clusters labeled Production could be treated as one such a
group, and all clusters labeled Staging could be treated as another such group. (Here, we are talking about
the env label assigned to each cluster in its Terraform spec, as illustrated in the examples shown in Section
3.2.) The third is a GitRepo, which is a repository to watch for changes to bundle artifacts. In our case, new
Helm Charts are checked into the Config Repo (but as indicated at the beginning of this chapter, there is
likely a dedicated “Helm Repo” in practice).

Understanding Fleet is then straightforward. It provides a way to define associations between Bundles, Clus-
ter Groups, and GitRepos, such that whenever an updated Helm chart is checked into a GitRepo, all Bundles
that contain that chart are (re-)deployed on all associated Cluster Groups. That is to say, Fleet can be viewed
as the mechanism that implements the Deployment Gate shown in Figure 6.2, although other factors can also
be taken into account (e.g., not starting a rollout at 5pm on a Friday afternoon). The next section describes
a versioning strategy that can be overlaid on this mechanism to control what features get deployed when.

Implementation Details Matter

We are purposely not doing a deep-dive into the individual tools that are assembled into the Lifecycle
Management subsystem, but details do often matter. Our experience with Fleet offers a good example.
As a careful reader may have noticed, we could have used Jenkins to trigger Fleet to deploy an upgraded
application, similar to how we do with Terraform. Instead, we decided to use Fleet’s internal triggering
mechanism because of the convenience of its Bundle and Cluster Group abstractions.

After Fleet came online as the Deployment mechanism, developers noticed that the code repo became
extremely sluggish. It turned out this is because Fleet polls the specified GitRepos to detect changes to the
watched Bundles, and the polling was so frequent it overloaded the repo. A “polling-frequency” parameter
change improved the situation, but led people to wonder why Jenkins’ trigger mechanism hadn’t caused the
same problem. The answer is that Jenkins is better integrated with the repo (specifically, Gerrit running
on top of Git), with the repo pushing event notifications to Jenkins when a file check-in actually occurs.
There is no polling.

This focus on Fleet as the agent triggering the execution of Helm Charts should not distract from the central
role of the charts themselves. They are the centerpiece of how we specify service deployments. They identify
the interconnected set of microservices to be deployed, and as we’ll see in the next section, are the ultimate
arbitrator of the version of each of those microservices. Later chapters will also describe how these charts
sometimes specify a Kubernetes Operator that is to run when a microservice is deployed, configuring the
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newly started microservice in some component-specific way. Finally, Helm Charts can specify the resources
(e.g., processor cores) each microservice is permitted to consume, including both minimal thresholds and
upper limits. Of course, all of this is possible only because Kubernetes supports the corresponding API calls,
and enforces resource usage accordingly.

Note that this last point about resource allocation shines a light on a fundamental characteristic of the kind
of edge/hybrid clouds we’re focused on: they are typically resource constrained, as opposed to offering the
seemingly infinite resources of a datacenter-based elastic cloud. As a consequence, provisioning and lifecycle
management are implicitly linked by the analysis used to decide (1) what services we want to deploy, (2) how
many resources those services require, and (3) how the available resources are to be shared among the curated
set of services.

6.5 4.5 Versioning Strategy

The CI/CD toolchain introduced in this chapter works only when applied in concert with an end-to-end
versioning strategy, ensuring that the right combination of source modules get integrated, and later, the right
combination of images gets deployed. Remember, the high-level challenge is to manage the set of features
that our cloud supports, which is another way of saying that everything hinges on how we version those
features.

Our starting point is to adopt the widely-accepted practice of Semantic Versioning, where each component
is assigned a three-part version number MAJOR.MINOR.PATCH (e.g., 3.2.4), where the MAJOR version
increments whenever you make an incompatible API change, the MINOR version increments when you add
functionality in a backward compatible way, and the PATCH corresponds to a backwards compatible bug fix.

Further Reading

Semantic Versioning 2.0.0.

The following sketches one possible interplay between versioning and the CI/CD toolchain, keeping in mind
there are different approaches to the problem. We break the sequence down to the three main phases of the
software lifecycle:

Development Time

• Every patch checked into a source code repo includes an up-to-date semantic version number in a
VERSION file in the repository. Note that every patch does not necessarily equal every commit, as it
is not uncommon to make multiple changes to an “in development” version, sometimes denoted 3.
2.4-dev, for example. This VERSION file is used by developers to keep track of the current version
number, but as we saw in Section 4.3.2, it also serves as a trigger for a Jenkins job that potentially
publishes a new Docker or Helm artifact.

• The commit that does correspond to a finalized patch is also tagged (in the repo) with the corresponding
semantic version number. In git, this tag is bound to a hash that unambiguously identifies the commit,
making it the authoritative way of binding a version number to a particular instance of the source code.

• For repos that correspond to microservices, the repo also has a Dockerfile that gives the recipe for
building a Docker image from that (and other) software module(s).
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Integration Time

• The CI toolchain does a sanity check on each component’s version number, ensuring it doesn’t regress,
and when it sees a new number for a microservice, builds a new image and uploads it to the image
repo. By convention, this image includes the corresponding source code version number in the unique
name assigned to the image.

Deployment Time

• The CD toolchain instantiates the set of Docker Images, as specified by name in one or more Helm
Charts. Since these image names include the semantic version number, by convention, we know the
corresponding software version being deployed.

• Each Helm Chart is also checked into a repository, and hence, has its own version number. Each time
a Helm Chart changes, because the version of a constituent Docker Image changes, the chart’s version
number also changes.

• Helm Charts can be organized hierarchically, that is, with one Chart including one or more other
Charts (each with their own version number), with the version of the root Chart effectively identifying
the version of the system as a whole being deployed.

Note that a commit of a new version of the root Helm Chart could be taken as the signal to the CD half of
the pipeline—as denoted by the the “Deployment Gate” in Figure 6.2—that the combination of modules
(features) is now deployment-ready. Of course, other factors can also be taken into consideration, such as
time of day as noted above.

While some of the Source Code → Docker Image → Kubernetes Container relationships just outlined can
be codified in the toolchain, at least at the level of automated sanity tests that catch obvious mistakes, respon-
sibility ultimately falls to the developers checking in source code and the operators checking in configuration
code; they must correctly specify the versions they intend. Having a simple and clear versioning strategy is
a prerequisite for doing that job.

Finally, because versioning is inherently related to APIs, with the MAJOR version number incremented when-
ever the API changes in a non-backward-compatible way, developers are responsible for ensuring their soft-
ware is able to correctly consume any APIs they depend on. Doing so becomes problematic when there is
persistent state involved, by which we mean state that must be preserved across multiple versions of the soft-
ware that accesses it. This is a problem that all operational systems that run continuously have to deal with,
and typically requires a data migration strategy. Solving this problem in a general way for application-level
state is beyond the scope of this book, but solving it for the cloud management system (which has its own
persistent state) is a topic we take up in the next chapter.

6.6 4.6 Managing Secrets

The discussion up this point has glossed over one important detail, which is how secrets are managed. These
include, for example, the credentials Terraform needs to access remote services like GCP, as well as the
keys used to secure communication among microservices within an edge cluster. Such secrets are effectively
part of the hybrid cloud’s configuration state, which would imply they are stored in the Config Repo, like
all other Configuration-as-Code artifacts. But repositories are typically not designed to be secure, which is
problematic.
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At a high level, the solution is straightforward. The various secrets required to operate a secure system are
encrypted, and only the encrypted versions are checked into the Config Repo. This reduces the problem to
worrying about just one secret, but effectively kicks the can down the road. How, then, do we manage (both
protect and distribute) the secret needed to decrypt the secrets? Fortunately, there are mechanisms available
to help solve that problem. Aether, for example, uses two different approaches, each with its own strengths
and weaknesses.

One approach is exemplified by the git-crypt tool, which closely matches the high-level summary out-
lined in the previous paragraph. In this case, the “central processing loop” of the CI/CD mechanism—which
corresponds to Jenkins in Aether—is the trusted entity responsible for decrypting the component-specific se-
crets and passing them along to various components at deployment time. This “pass along” step is typically
implemented using the Kubernetes Secrets mechanism, which is an encrypted channel for sending configu-
ration state to microservices (i.e., it is similar to ConfigMaps). This mechanism should not be confused with
SealedSecrets (discussed next) because it does not, by itself, address the larger issue we’re discussing here,
which is how secrets are managed outside a running cluster.

This approach has the advantage of being general because it makes few assumptions and works for all secrets
and components. But it comes with the downside of investing significant trust in Jenkins, or more to the
point, in the practices the DevOps team adopts for how they use Jenkins.

The second approach is exemplified by Kubernetes’ SealedSecrets mechanism. The idea is to trust a process
running within the Kubernetes cluster (technically, this process is known as a Controller) to manage secrets
on behalf of all the other Kubernetes-hosted microservices. At runtime, this process creates a Private/Public
key pair, and makes the Public key available to the CI/CD toolchain. The Private key is restricted to the
SealedSecrets Controller, and is referred to as the sealing key. Without stepping through the details of the
full protocol, the Public key is used in combination with a randomly-generated symmetric key to encrypt
all the secrets that need to be stored in the Config Repo, and later (at deployment time), the individual
microservices ask the SealedSecrets Controller to use its sealing key to help them unlock those secrets.

While this approach is less general than the first (i.e., it is specific to protecting secrets within a Kubernetes
cluster), it has the advantage of taking humans completely out-of-the-loop, with the sealing key being pro-
grammatically generated at runtime. One complication, however, is that it is generally preferable for that
secret to be written to persistent storage, to protect against having to restart the SealedSecrets Controller.
This potentially opens up an attack surface that needs to be protected.

Further Reading

git-crypt - transparent file encryption in git.

“Sealed Secrets” for Kubernetes.
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6.7 4.7 What about GitOps?

The CI/CD pipeline described in this chapter is consistent with GitOps, an approach to DevOps designed
around the idea of Configuration-as-Code—making the code repo the single source of truth for building and
deploying a cloud native system. The approach is premised on first making all configuration state declarative
(e.g, specified in Helm Charts and Terraform Templates), and then treating this repo as the single source of
truth for building and deploying a cloud native system. It doesn’t matter if you patch a Python file or update
a config file, the repo triggers the CI/CD pipeline as described in this chapter.

While the approach described in this chapter is based on the GitOps model, there are three considerations
that mean GitOps is not the end of the story. All hinge on the question of whether all state needed to operate
a cloud native system can be managed entirely with a repository-based mechanism.

The first consideration is that we need to acknowledge the difference between people who develop software
and people who build and operate systems using that software. DevOps (in its simplest formulation) implies
there should be no distinction. In practice, developers are often far removed from operators, or more to the
point, they are far removed from design decisions about exactly how others will end up using their soft-
ware. For example, software is usually implemented with a particular set of use cases in mind, but it is later
integrated with other software to build entirely new cloud apps that have their own set of abstractions and
features, and correspondingly, their own collection of configuration state. This is true for Aether, where the
SD-Core subsystem was originally implemented for use in global cellular networks, but is being repurposed
to support private 4G/5G in enterprises.

While it is true such state could be managed in a Git repository, the idea of configuration management by pull
request is overly simplistic. There are both low-level (implementation-centric) and high-level (application-
centric) variables; in other words, it is common to have one or more layers of abstraction running on top of
the base software. In the limit, it may even be an end-user (e.g., an enterprise user in Aether) who wants to
change this state, which implies fine-grained access control is likely a requirement. None of this disqualifies
GitOps as a way to manage such state, but it does raise the possibility that not all state is created equal—that
there is a range of configuration state variables being accessed at different times by different people with
different skill sets, and most importantly, needing different levels of privilege.

The second consideration has to do with where configuration state originates. For example, consider the
addresses assigned to the servers assembled in a cluster, which might originate in an organization’s inventory
system. Or in another example specific to Aether, it is necessary to call a remote Spectrum Access Service
(SAS) to learn how to configure the radio settings for the small cells that have been deployed. Naively, you
might think that’s a variable you could pull out of a YAML file stored in a Git repository. In general, systems
often have to deal with multiple—sometimes external—sources of configuration state, and knowing which
copy is authoritative and which is derivative is inherently problematic. There is no single right answer, but
situations like this raise the possibility that the authoritative copy of configuration state needs to be maintained
apart from any single use of that state.

The third consideration is how frequently this state changes, and hence, potentially triggers restarting or
possibly even re-deploying a set of containers. Doing so certainly makes sense for “set once” configuration
parameters, but what about “runtime settable” control variables? What is the most cost-effective way to
update system parameters that have the potential to change frequently? Again, this raises the possibility that
not all state is created equal, and that there is a continuum of configuration state variables.

These three considerations point to there being a distinction between build-time configuration state and run-
time control state, the topic of the next chapter. We emphasize, however, that the question of how to manage
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such state does not have a single correct answer; drawing a crisp line between “configuration” and “control”
is notoriously difficult. Both the repo-based mechanism championed by GitOps and runtime control alter-
natives described in the next chapter provide value, and it is a question of which is the better match for any
given piece of information that needs to be maintained for a cloud to operate properly.
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CHAPTER

SEVEN

CHAPTER 5: RUNTIME CONTROL

Runtime Control provides an API by which various principals, such as end-users, enterprise admins, and
cloud operators, can make changes to a running system, by specifying new values for one or more runtime
parameters.

Using Aether’s 5G connectivity service as an example, suppose an enterprise admin wants to change the
Quality-of-Service for a group of mobile devices. Aether defines a Device Group abstraction so that re-
lated devices can be configured together. The admin can then modify the Maximum Uplink Bandwidth or
Maximum Downlink Bandwidth, or even select a different Traffic Class for the group. Similarly, imagine an
operator wants to add a new Mission-Critical option to the existing set of Traffic Classes that devices can
adopt. Without worrying about the exact syntax of the API call(s) for these operations, the Runtime Control
subsystem needs to:

1. Authenticate the principal wanting to perform the operation.

2. Determine if that principal has sufficient privilege to carry out the operation.

3. Push the new parameter setting(s) to one or more backend components.

4. Record the specified parameter setting(s), so the new value(s) persist.

In this example, Device Group and Traffic Class are abstract objects being operated upon, and while these
objects must be understood by Runtime Control, making changes to them might involve invoking low-level
control operations on multiple subsystems, such as the SD-RAN (which is responsible for QoS in the RAN),
the SD-Fabric (which is responsible for QoS through the switching fabric), SD-Core UP (which is responsible
for QoS in the mobile core user plane), and SD-Core CP (which is responsible for QoS in the mobile core
control plane).

In short, Runtime Control defines an abstraction layer on top of a collection of backend components, effec-
tively turning them into externally visible (and controllable) cloud services. Sometimes a single backend
component implements the entirety of a service, in which case Runtime Control may add little more than a
Triple-A layer. But for a cloud constructed from a collection of disaggregated components, Runtime Con-
trol is where we define an API that logically integrates those components into a unified and coherent set of
abstract services. It is also an opportunity to “raise the level of abstraction” for the underlying subsystems
and hiding implementation details.

Note that because of its role assembling an end-to-end service across a set of backend components, the
Runtime Control mechanism described in this chapter is similar to a Service Orchestrator that chains together
a collection of VNFs in a Telco network. Either term could be used here, but we have elected to use “Runtime
Control” to emphasize the temporal aspect of the problem, especially its relationship to lifecycle management.
It is also the case that “orchestration” is a loaded term with different connotations in different contexts.
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In a Cloud setting it implies assembling virtual resources, while in a Telco setting it implies assembling
virtual functions. As is often the case in complex systems (especially when they promote competing business
models), the higher you go in the stack, the less consensus there is about terminology.

Whatever you call the mechanism, defining a set of abstractions and the corresponding API is a challenging
job. Having the appropriate tools helps to focus on the creative part of that task, but by no means eliminates
it. The challenge is partly a matter of judgment about what should be visible to users and what should be a
hidden implementation detail, and partly about dealing with conflicting/conflated concepts and terminology.
We’ll see a full example in Section 5.3, but to illustrate the difficulty, consider how Aether refers to principals
in its 5G connectivity service. If we were to borrow terminology directly from the Telcos, then we’d refer
to someone that uses a mobile device as a subscriber, implying an account and a collection of settings for
the service delivered to that device. And in fact, subscriber is a central object within the SD-Core imple-
mentation. But Aether is designed to support enterprise deployments of 5G, and to that end, defines a user
to be a principal that accesses the API or GUI portal with some prescribed level of privilege. There is not
necessarily a one-to-one relationship between users and Core-defined subscribers, and more importantly, not
all devices have subscribers, as would be the case with IoT devices that are not typically associated with a
particular person.

7.1 5.1 Design Overview

At a high level, the purpose of Runtime Control is to offer an API that various stakeholders can use to
configure and control cloud services. In doing so, Runtime Control must:

• Support new end-to-end abstractions that may cross multiple backend subsystems.

• Associate control and configuration state with those abstractions.

• Support versioning of this configuration state, so changes can be rolled back as necessary, and an audit
history may be retrieved of previous configurations.

• Adopt best practices of performance, high availability, reliability, and security in how this abstraction
layer is implemented.

• Support Role-Based Access Controls (RBAC), so that different principals have different visibility into
and control over the underlying abstract objects.

• Be extensible, and so able to incorporate new services and new abstractions for existing services over
time.

Central to this role is the requirement that Runtime Control be able to represent a set of abstract objects,
which is to say, it implements a data model. While there are several viable options for the specification
language used to represent the data model, for Runtime Control we use YANG. This is for three reasons.
First, YANG is a rich language for data modeling, with support for strong validation of the data stored in
the models and the ability to define relations between objects. Second, it is agnostic as to how the data is
stored (i.e., not directly tied to SQL/RDBMS or NoSQL paradigms), giving us a generous set of engineering
options. Finally, YANG is widely used for this purpose, meaning there is a robust collection of YANG-based
tools that we can build upon.

Further Reading
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YANG - A Data Modeling Language for the Network Configuration Protocol. RFC 6020. October 2010.

Web Frameworks

The role Runtime Control plays in operationalizing a cloud is similar to the role a Web Framework plays in
operationalizing a web service. If you start with the assumption that certain classes of users will interact
with your system (in our case, an edge cloud) via a GUI, then either you write that GUI in a language
like PHP (as early web developers did), our you take advantage of a framework like Django or Ruby on
Rails. What such frameworks provide is a way to define a set of user-friendly abstractions (these are called
Models), a means to visualize those abstractions in a GUI (these are called Views), and a means to affect
change on collection of backend systems based on user input (these are called Controllers). It is not an
accident that Model-View-Controller (MVP) is a well-understood design paradigm.

The Runtime Control system described in this chapter adopts a similar approach, but instead of defining the
models in Python (as with Django) or Ruby (as with Ruby on Rails), we define models using a declarative
language (YANG) which is in turn used to generate a programmatic API. This API can then be invoked from
(1) a GUI, which is itself typically built using another framework, such as AngularJS; (2) a CLI; or (3) a
closed-loop control program. There are other differences—for example, Adapters (a kind of Controller)
use gNMI as a standard interface for controlling backend components, and persistent state is stored in a
key-value store instead of a SQL DB—but the biggest difference is the use of a declarative rather than an
imperative language to define models.

With this background, Figure 7.1 shows the internal structure of Runtime Control for Aether, which has x-
config—a microservice that maintains a set of YANG models—at its core.1 x-config, in turn, uses Atomix
(a key-value store microservice), to make configuration state persistent. Because x-config was originally
designed to manage configuration state for devices, it uses gNMI as its southbound interface to communicate
configuration changes to devices (or in our case, software services). An Adapter has to be written for any
service/device that does not support gNMI natively. These adapters are shown as part of Runtime Control in
Figure 7.1, but it is equally correct to view each adapter as part of the backend component, responsible for
making that component management-ready. Finally, Runtime Control includes a Workflow Engine that is
responsible for executing multi-step operations on the data model. This happens, for example, when a change
to one model triggers some action on another model. Each of these components are described in more detail
in the next section.

The Runtime Control API is auto-generated from the YANG-based data model, and as shown in Figure
7.1, supports two portals and a set of closed-loop control applications. There is also a CLI (not shown).
This API provides a single entry-point for all control information that can be read or written in Aether,
and as a consequence, Runtime Control can also mediate access to the other subsystems of the Control and
Management Platform (not just the subsystems shown in Figure 7.1).

This situation is illustrated in Figure 7.2, where the key takeaways are that (1) we want RBAC and auditing
for all operations; (2) we want a single source of authoritative configuration state; and (3) we want to grant
limited (fine-grained) access to management functions to arbitrary principals rather than assume only a sin-
gle privileged class of operators. Of course, the private APIs of the underlying subsystems still exist, and

1 x-config is a general-purpose, model-agnostic tool. In AMP, it manages YANG models for cloud services, but it is also used
by SD-Fabric to manage YANG models for a set of network switches and by SD-RAN to manage YANG models for a set of RAN
elements. This means multiple instances of the x-config microservice run in a given Aether edge cluster.
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Figure 7.1.: Internal structure of Runtime Control, and its relationship to backend subsystems (below) and
user portals/apps (above).

operators can directly use them. This can be especially useful when diagnosing problems, but for the three
reasons given above, there is a strong argument in favor of mediating all control activity using the Runtime
Control API.

This discussion is related to the “What About GitOps?” question raised at the end of Chapter 4. We return to
that same question at the end of this chapter, but to set the stage, we now have the option of Runtime Control
maintaining authoritative configuration and control state for the system in its key-value store. This raises the
question of how to “share ownership” of configuration state with the repositories that implement Lifecycle
Management.

One option is to decide on a case-by-case basis: Runtime Control maintains authoritative state for some
parameters and the Config Repo maintains authoritative state for other parameters. We just need to be clear
about which is which, so each backend component knows which “configuration path” it needs to be responsive
to. Then, for any repo-maintained state for which we want Runtime Control to mediate access (e.g., to provide
fine-grained access for a more expansive set of principals), we need to be careful about the consequences of
any backdoor (direct) changes to that repo-maintained state, for example, by storing only a cached copy of
that state in Runtime Control’s key-value store (as an optimization).

Another aspect of Figure 7.2 worth noting is that, while Runtime Control mediates all control-related activity,
it is not in the “data path” for the subsystems it controls. This means, for example, that monitoring data
returned by the Monitoring & Telemetry subsystem does not pass through Runtime Control; it is delivered
directly to dashboards and applications running on top of the API. Runtime Control is only involved in
authorizing access to such data. It is also the case that Runtime Control and the Monitoring subsystem have
their own, independent data stores: it is the Atomix key-value store for Runtime Control and a Time-Series
DB for Monitoring (as discussed in more detail in Chapter 6).

In summary, the value of a unified Runtime Control API is best illustrated by the ability to implement closed-
loop control applications (and other dashboards) that “read” data collected by the Monitoring subsystem;
perform some kind of analysis on that data, possibly resulting in a decision to take corrective action; and
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Figure 7.2.: Runtime Control also mediates access to the other Management Services.

then “write” new control directives, which x-config passes along to some combination of SD-RAN, SD-
Core, and SD-Fabric, or sometimes even to the Lifecycle Management subsystem. (We’ll see an example
of the latter in Section 5.3.) This closed-loop scenario is depicted in Figure 7.3, which gives a different
perspective by showing the Monitoring subsystem as a “peer” of Runtime Control (rather than below it),
although both perspectives are valid.

7.2 5.2 Implementation Details

This section describes each of the components in Runtime Control, focusing on the role each plays in cloud
management.

7.2.1 5.2.1 Models & State

x-config is the core of the Runtime Control. Its job is to store and version configuration data. Configuration is
pushed to x-config through its northbound gNMI interface, stored in a persistent key-value store, and pushed
to backend subsystems using a southbound gNMI interface.

A collection of YANG-based models define the schema for this configuration state. These models are loaded
into x-config, and collectively define the data model for all the configuration and control state that Runtime
Control is responsible for. As an example, the data model (schema) for Aether is sketched in Section 5.3, but
another example would be the set of OpenConfig models used to manage network devices.

Further Reading

OpenConfig: Vendor-neutral, model-driven network management.

There are four important aspects of this mechanism:
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Figure 7.3.: Another perspective of Runtime Control, illustrating the value of a unified API that supports
closed-loop control applications.

• Persistent Store: Atomix is the cloud native key-value store used to persist data in x-config. Atomix
supports a distributed map abstraction, which implements the Raft consensus algorithm to achieve
fault-tolerance and scalable performance. x-config writes data to and reads data from Atomix using a
simple GET/PUT interface common to NoSQL databases.

• Loading Models: Models are loaded using Model Plugins. x-config communicates via a gRPC API
to Model Plugins, loading the models at runtime. The Model Plugins are precompiled, and therefore
no compilation at runtime is necessary. The interface between x-config and the plugins eliminates
dynamic loading compatibility issues.

• Versioning and Migration: All the models loaded into x-config are versioned, and the process of
updating those models triggers the migration of persistent state from one version of the data model to
another. The migration mechanism supports simultaneous operation of multiple versions.

• Synchronization: It is expected that the backend components being controlled by x-config will peri-
odically fail and restart. Since x-config is the runtime source-of-truth for those components, it takes
responsibility for ensuring that they re-synchronize with the latest state upon restart. x-config is able
to detect a restart (and trigger the synchronization) because its models include variables that reflect the
operational state of those components.

Two points require further elaboration. First, because Atomix is fault-tolerant as long as it runs on multiple
physical servers, it can be built on top of unreliable local (per-server) storage. There is no reason to use highly
available cloud storage. On the other hand, prudence dictates that all the state the Runtime Control subsystem
maintains be backed up periodically, in case it needs to be restarted from scratch due to a catastrophic failure.
These checkpoints, plus all the configuration-as-code files stored in a Git repository, collectively define the
entirety of the authoritative state needed to (re-)instantiate a cloud deployment.

Second, the set of model definitions are like any other piece of configuration-as-code. They are checked
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into the code repository and versioned, just as described in Section 4.5. Moreover, the Helm chart that
specifies how to deploy the Runtime Control subsystem identifies the version of the models that are to be
loaded, analogous to the way Helm charts already identify the version of each microservice (Docker Image)
to be deployed. This means the version of the Runtime Control Helm chart effectively specifies the version
of the Runtime Control API, since that API is auto-generated from the set of models, as we’ll see in the
next subsection. All of this is to say that version control for the Northbound Interface of the cloud, as an
aggregated whole, is managed in exactly the same way as version control for each functional building block
that contributes to the cloud’s internal implementation.

7.2.2 5.2.2 Runtime Control API

An API provides an interface wrapper that sits between x-config and higher-layer portals and applications.
Northbound, it offers a RESTful API. Southbound, it speaks gNMI to x-config. The Runtime Control API
layer serves three main purposes:

• Unlike gNMI (which supports only GET and SET operations), a RESTful API (which supports GET,
PUT, POST, PATCH, and DELETE operations) is expected for GUI development.

• The API layer is an opportunity to implement early parameter validation and security checks. This
makes it possible to catch errors closer to the user, and generate more meaningful error messages than
is possible with gNMI.

• The API layer defines a “gate” that can be used to audit the history of who performs what operation
when (also taking advantage of the identity management mechanism described next).

It is possible to auto-generate the REST API from the set of models loaded into x-config, although one is also
free to augment this set with additional “hand-crafted” calls for the sake of convenience (with the caveat that
this will likely mean the API is no longer RESTful). The idea of using the model specification as a single
source of truth and deriving other artifacts, such as the API, from this specification is appealing because
it improves developer productivity, and provides fewer opportunities for inconsistencies to be introduced
between layers. Consider, for example, if the developer wishes to add a single field to a model. Without
auto-generation, the following must all be updated:

• Model

• API specification

• Stubs that service the API by operating on the models

• Client-side libraries or developer kits

• GUI views that visualize the models

The Aether solution is to use a tool called oapi-codegen to convert the YANG declarations into an Ope-
nAPI3 specification, and then a tool called oapi-codegen to auto-generate the stubs that implement the
API.

Further Reading

OpenAPI 3.0: API Development for Everyone.
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Auto-generating the API is not without its pitfalls. The models and the API quickly develop a 1:1 correspon-
dence, meaning any change in the modeling is immediately realized as visible change in the API. This means
modeling changes must be approached carefully if backward-compatibility is to be preserved. Migration is
also more difficult since a single API cannot easily satisfy two sets of models.

An alternative would be to introduce a second external-facing API, and a small translation layer between
the auto-generated internal API and the external API. The shim layer would function as a shock absorber,
mitigating the frequent bumps that might occur in the internal API. Of course, this presumes the external-
facing API is relatively stable, which is problematic if the reason the models are changing in the first place
is that the service definition is not yet mature. If the models are changing due to volatility in the backend
systems they control, then it is often the case that the models can be distinguished as “low-level” or “high-
level”, with only the latter directly visible to clients via the API. In semantic versioning terms, a change to a
low-level model would then effectively be a backwards compatible PATCH.

7.2.3 5.2.3 Identity Management

Runtime Control leverages an external identity database (an LDAP server) to store user data such as account
names and passwords for users who are able to log in. This LDAP server also has the capability to associate
users with groups. For example, adding administrators to the AetherAdmin group would be an obvious way
to grant those individuals with administrative privileges within Runtime Control.

An external authentication service, Keycloak, serves as a frontend to a database such as LDAP. It authenticates
the user, handles the mechanics of accepting the password, validating it, and securely returning the group the
user belongs to.

Further Reading

Keycloak: Open Source Identity and Access Management.

The group identifier is then used to grant access to resources within Runtime Control, which points to the
related problem of establishing which classes of users are allowed to create/read/write/delete various collec-
tions of objects. Like identity management, defining such RBAC policies is well understood, and supported
by open source tools. In the case of Aether, Open Policy Agent (OPA) serves this role.

Further Reading

Policy-based control for cloud native environments.
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7.2.4 5.2.4 Adapters

Not every service or subsystem beneath Runtime Control supports gNMI, and in the case where it is not
supported, an adapter is written to translate between gNMI and the service’s native API. In Aether, for
example, a gNMI → REST adapter translates between the Runtime Control’s southbound gNMI calls and the
SD-Core subsystem’s RESTful northbound interface. The adapter is not necessarily just a syntactic translator,
but may also include its own semantic layer. This supports a logical decoupling of the models stored in x-
config and the interface used by the southbound device/service, allowing the southbound device/service and
Runtime Control to evolve independently. It also allows for southbound devices/services to be replaced
without affecting the northbound interface.

An adapter does not necessarily support only a single service. An adapter is one means of taking an abstrac-
tion that spans multiple services and applying it to each of those services. An example in Aether is the User
Plane Function (the main packet-forwarding module in the SD-Core User Plane) and SD-Core, which are
jointly responsible for enforcing Quality of Service, where the adapter applies a single set of models to both
services. Some care is needed to deal with partial failure, in case one service accepts the change, but the
other does not. In this case, the adapter keeps trying the failed backend service until it succeeds.

7.2.5 5.2.5 Workflow Engine

The workflow engine, to the left of the x-config in Figure 7.1, is where multi-step workflows are implemented.
For example, defining a new 5G connection or associating devices with an existing connection is a multi-
step process, using several models and impacting multiple backend subsystems. In our experience, there may
even be complex state machines that implement those steps.

There are well-known open source workflow engines (e.g., Airflow), but our experience is that they do not
match up with the types of workflows typical of systems like Aether. As a consequence, the current im-
plementation is ad hoc, with imperative code watching a target set of models and taking appropriate action
whenever they change. Defining a more rigorous approach to workflows is a subject of ongoing development.

7.2.6 5.2.6 Secure Communication

gNMI naturally lends itself to mutual TLS for authentication, and that is the recommended way to secure
communications between components that speak gNMI. For example, communication between x-config and
its adapters uses gNMI, and therefore, uses mutual TLS. Distributing certificates between components is
a problem outside the scope of Runtime Control. It is assumed that another tool will be responsible for
distributing, revoking, and renewing certificates.

For components that speak REST, HTTPS is used to secure the connection, and authentication can take place
using mechanisms within the HTTPS protocol (basic auth, tokens, etc). Oauth2 and OpenID Connect are
leveraged as an authorization provider when using these REST APIs.
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7.3 5.3 Modeling Connectivity Service

This section sketches the data model for Aether’s connectivity service as a way of illustrating the role Runtime
Control plays. These models are specified in YANG (for which we include a concrete example of one of the
models), but since the Runtime Control API is generated from these specs, it is equally valid to think in
terms of an API that supports REST’s GET, POST, PUT, PATCH, and DELETE operations on a set of web
resources (objects):

• GET: Retrieve an object.

• POST: Create an object.

• PUT, PATCH: Modify an existing object.

• DELETE: Delete an object.

Each object is an instance of one of the YANG-defined models, where every object contains an id field that
is used to identify the object. These identifiers are model-specific, so for example, a site has a site-id and an
enterprise has an enterprise-id. The models are generally nested, so for example, a site is a member of an
enterprise. Objects can also contain references to other objects; such references are implemented using the
object’s unique id. In a database setting these are often called foreign keys.

In addition to the id field, several other fields are also common to all models. These include:

• description: A human-readable description, used to store additional context about the object.

• display-name: A human-readable name that is shown in the GUI.

As these fields are common to all models, we omit them from the per-model descriptions that follow. In the
following, we use upper case to denote a model (e.g., Enterprise) and lower case to denote a field within a
model (e.g., enterprise).

7.3.1 5.3.1 Enterprises

Aether is deployed in enterprises, and so defines a representative set of organizational abstractions. These
include Enterprise, which forms the root of a customer-specific hierarchy. The Enterprise model is the
parent of many other objects, and allows those objects to be scoped to a particular Enterprise for ownership
and role-based access control purposes. The Enterprise model contains the following field:

• connectivity-service: A list of backend subsystems that implement connectivity for this enterprise.
Corresponds to an API endpoint to the SD-Core, SD-Fabric, and SD-RAN.

Enterprises are further divided into Sites. A site is a point-of-presence for an Enterprise and may be either
physical or logical (i.e., a single geographic location could contain several logical sites). The Site model
contains the following fields:

• imsi-definition: A description of how IMSIs are constructed for this site. Contains the following sub-
fields:

– mcc: Mobile country code.

– mnc: Mobile network code.

– enterprise: A numeric enterprise id.
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– format: A mask that allows the above three fields to be embedded into an IMSI. For example
CCCNNNEEESSSSSS will construct IMSIs using a 3-digit MCC, 3-digit MNC, 3-digit ENT,
and a 6-digit subscriber.

• small-cell: A list of 5G gNodeBs or Access Points or Radios. Each small cell has the following:

– small-cell-id: Identifier for the small cell. Serves the same purpose as other id fields.

– address: Hostname of the small cell.

– tac: Type Allocation Code.

– enable: If set to true, the small cell is enabled. Otherwise, it is disabled.

The imsi-definition is specific to the mobile cellular network, and corresponds to the unique identifier burned
into every SIM card.

7.3.2 5.3.2 Slices

Aether models 5G connectivity as a Slice, which represents an isolated communication channel (and asso-
ciated QoS parameters) that connects a set of devices (modeled as a Device-Group) to a set of applications
(each of which is modeled as an Application). Each slice is nested within some site (which is in turn nested
inside some enterprise), where for example, an enterprise might configure one slice to carry IoT traffic and
another slice to carry video traffic. The Slice model has the following fields:

• device-group: A list of Device-Group objects that can participate in this Slice. Each entry in the
list contains both the reference to the Device-Group as well as an enable field which may be used to
temporarily remove access to the group.

• app-list: A list of Application objects that are either allowed or denied for this Slice. Each entry in the
list contains both a reference to the Application as well as an allow field which can be set to true to
allow the application or false to deny it.

• template: Reference to the Template that was used to initialize this Slice.

• upf : Reference to the User Plane Function (UPF) that should be used to process packets for this Slice.
It’s permitted for multiple Slices to share a single UPF.

• sst, sd: 3GPP-defined slice identifiers assigned by the operations team.

• mbr.uplink, mbr.downlink, mbr.uplink-burst-size, mbr.downlink-burst-size: Aggregate maximum bit-
rate and burst sizes of all devices for this slice.

The rate-related parameters are initialized using a selected template, as described below. Also note that this
example illustrates how modeling can be used to enforce invariants, in this case, that the Site of the UPF and
Device-Group must match the Site of the Slice. That is, the physical devices that connect to a slice and the
UPF that implements the core segment of the slice must be constrained to a single physical location.

At one end of a Slice is a Device-Group, which identifies a set of devices that are allowed to use the Slice to
connect to various applications. The Device-Group model contains the following fields:

• devices: A list of Devices. Each device has an enable field which can be used to enable or disable the
device.
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• ip-domain: Reference to an IP-Domain object that describes the IP and DNS settings for UEs within
this group.

• mbr.uplink, mbr.downlink: Per-device maximum bit-rate for the device group.

• traffic-class: The traffic class to be used for devices in this group.

At the other end of a Slice is a list of Application objects, which specifies the endpoints for the program
devices talk to. The Application model contains the following fields:

• address: The DNS name or IP address of the endpoint.

• endpoint: A list of endpoints. Each has the following fields:

– name: Name of the endpoint. Used as a key.

– port-start: Starting port number.

– port-end: Ending port number.

– protocol: Protocol (TCP|UDP) for the endpoint.

– mbr.uplink, mbr.downlink: Per-device maximum bitrate for the application endpoint.

– traffic-class: Traffic class for devices communicating with this application.

Anyone familiar with 3GPP will recognize Aether’s Slice abstraction as similar to the specification’s notion
of a network slice. The Slice model definition includes a combination of 3GPP-specified identifiers (e.g.,
sst and sd), and details about the underlying implementation (e.g., upf denotes the UPF implementation for
the Core’s user plane). Although not yet part of the production system, there is a version of Slice that also
includes fields related to RAN slicing, with the Runtime Control subsystem responsible for stitching together
end-to-end connectivity across the RAN, Core, and Fabric.

An API for Platform Services

We are using Connectivity-as-a-Service as an illustrative example of the role Runtime Control plays, but
APIs can be defined for other platform services using the same machinery. For example, because the
SD-Fabric in Aether is implemented with programmable switching hardware, the forwarding plane is in-
strumented with Inband Network Telemetry (INT). A northbound API then enables fine-grained data col-
lection on a per-flow basis, at runtime, making it possible to write closed-loop control applications on top
of Aether.

In a similar spirit, the QoS-related control example given in this section could be augmented with addi-
tional objects that provide visibility into, and an opportunity to exert control over, various radio-related
parameters implemented by SD-RAN. Doing so would be a step towards a platform API that enables a new
class of industry automation edge cloud apps.

In general, IaaS and PaaS offerings need to support application- and user-facing APIs that go beyond the
DevOps-level configuration files consumed by the underlying software components (i.e., microservices).
Creating these interfaces is an exercise in defining a meaningful abstraction layer, which, when done
using declarative tooling, becomes an exercise in defining high-level data models. Runtime Control is the
management subsystem responsible for specifying and implementing the API for such an abstraction layer.
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7.3.3 5.3.3 Templates and Traffic Classes

Associated with each Slice is a QoS-related profile that governs how traffic that slice carries is to be treated.
This starts with a Template model, which defines the valid (accepted) connectivity settings. The Aether
operations team is responsible for defining these (the features they offer must be supported by the backend
subsystems), with enterprises selecting the template they want applied to any instances of the connectivity
service they create (e.g., via a drop-down menu). That is, templates are used to initialize Slice objects. The
Template model has the following fields:

• sst, sd: Slice identifiers, as specified by 3GPP.

• mbr.uplink, mbr.downlink: Maximum uplink and downlink bandwidth.

• mbr.uplink-burst-size, mbr.downlink-burst-size: Maximum burst size.

• traffic-class: Link to a Traffic-Class object that describes the type of traffic.

Notice that the Device-Group and Application models include similar fields. The idea is that QoS param-
eters are established for the slice as a whole (based on the selected template) and then individual devices
and applications connected to that slice can be assigned their own, more-restrictive QoS parameters on an
instance-by-instance basis.

As noted in the previous section, Aether decouples the abstract Slice objects from the implementation details
about the backend segments of the end-to-end slices. One reason for this decoupling is that it supports the
option of spinning up an entirely new copy of the SD-Core rather than sharing an existing UPF with another
Slice. This is done to ensure isolation, and illustrates one possible touch-point between Runtime Control and
the Lifecycle Management subsystem: Runtime Control, via an Adapter, engages Lifecycle Management to
launch the necessary set of Kubernetes containers that implement an isolated slice.

The Traffic-Class model specifies the classes of traffic, and includes the following fields:

• arp: Allocation and retention priority.

• qci: QoS class identifier.

• pelr: Packet error loss rate.

• pdb: Packet delay budget.

For completeness, the following shows the corresponding YANG for the Template model. The example omits
some introductory boilerplate for the sake of brevity. The example highlights the nested nature of the model
declarations, with both container and leaf fields.

module onf-template {
...
description
"The aether vcs-template holds common parameters used
by a virtual connectivity service. Templates are used to
populate a VCS.";

typedef template-id {
type yg:yang-identifier {

length 1..32;
}

(continues on next page)
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(continued from previous page)

}
container template {
description "The top level container";
list template {

key "id";
description
"List of vcs templates";

leaf id {
type template-id;
description "ID for this vcs template.";

}
leaf display-name {
type string {

length 1..80;
}
description "display name to use in GUI or CLI";

}
leaf sst {
type at:sst;
description "Slice/Service type";

}
leaf sd {
type at:sd;
description "Slice differentiator";

}
container device {
description "Per-device QOS Settings";
container mbr {

description "Maximum bitrate";
leaf uplink {
type at:bitrate;
units bps;
description "Per-device mbr uplink data rate in mbps";

}
leaf downlink {
type at:bitrate;
units bps;
description "Per-device mbr downlink data rate in mbps";

}
}

}
container slice {
description "Per-Slice QOS Settings";
container mbr {

description "Maximum bitrate";
leaf uplink {

(continues on next page)
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type at:bitrate;
units bps;
description "Per-Slice mbr uplink data rate in mbps";

}
leaf downlink {
type at:bitrate;
units bps;
description "Per-Slice mbr downlink data rate in mbps";

}
}

}
leaf traffic-class {
type leafref {

path "/tc:traffic-class/tc:traffic-class/tc:id";
}
description

"Link to traffic class";
}
leaf description {
type at:description;
description "description of this vcs template";

}
}

}
}

7.3.4 5.3.4 Other Models

The above description references other models, which we do not fully describe here. They include IP-
Domain, which specifies IP and DNS settings; and UPF, which specifies the User Plane Function (the data
plane element of the SD-Core) that should forward packets on behalf of this particular instance of the con-
nectivity service. The UPF model is necessary because an Aether deployment can run many UPF instances.
This is because there are two different implementations (one runs as a microservice on a server and the other
runs as a P4 program loaded into the switching fabric), and because multiple microservice-based UPFs can
be instantiated at any given time, each isolating a distinct traffic flow.

Further Reading

L. Peterson, et al. Software-Defined Networks: A Systems Approach. November 2021.
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7.4 5.4 Revisiting GitOps

As we did at the end of Chapter 4, it is instructive to revisit the question of how to distinguish between
configuration state and control state, with Lifecycle Management (and its Config Repo) responsible for the
former, and Runtime Control (and its key-value store) responsible for the latter. Now that we have seen the
Runtime Control subsystem in more detail, it is clear that one critical factor is whether or not a programmatic
interface (coupled with an access control mechanism) is required for accessing and changing that state.

Cloud operators and DevOps teams are perfectly capable of checking configuration changes into a Config
Repo, which can make it tempting to view all state that could be specified in a configuration file as Lifecycle-
managed configuration state. The availability of enhanced configuration mechanisms, such as Kubernetes
Operators, make that temptation even greater. But any state that might be touched by someone other than an
operator—including enterprise admins and runtime control applications—needs to be accessed via a well-
defined API. Giving enterprises the ability to set isolation and QoS parameters is an illustrative example in
Aether. Auto-generating that API from a set of models is an attractive approach to realizing such a control
interface, if for no other reason than it forces a decoupling of the interface definition from the underlying
implementation (with Adapters bridging the gap).

UX Considerations

Runtime control touches an important, but often under-appreciated aspect of operating a cloud: taking
User Experience (UX) into account. If the only users you’re concerned about are the developers and
operators of the cloud and its services, who we can assume are comfortable editing a handful of YAML files
to execute a change request, then maybe we can stop there. But if we expect end-users to have some ability
to steer the system we’re building, we also need to “plumb” the low-level variables we’ve implemented
through to a set of dials and knobs that those users can access.

UX Design is a well-established discipline. It is in part about designing GUIs with intuitive workflows,
but a GUI depends on a programmatic interface. Defining that interface is the touchpoint between the
management and control platform we’re focused on in this book, and the users we want to support. This
is largely an exercise in defining abstractions, which brings us back to the central point we are trying to
make: it is both the reality of the underlying implementation and the mental model of the target users that
shape these abstractions. Considering one without the other, as anyone who has read a user’s manual
understands, is a recipe for disaster.

On this latter point, it is easy to imagine an implementation of a runtime control operation that involves
checking a configuration change into the Config Repo and triggering a redeployment. Whether you view such
an approach as elegant or clunky is a matter of taste, but how such engineering decisions are resolved depends
in large part on how the backend components are implemented. For example, if a configuration change
requires a container restart, then there may be little choice. But ideally, microservices are implemented
with their own well-defined management interfaces, which can be invoked from either a configuration-time
Operator (to initialize the component at boot time) or a control-time Adapter (to change the component at
runtime).

For resource-related operations, such as spinning up additional containers in response to a user request to
create a Slice or activate an edge service, a similar implementation strategy is feasible. The Kubernetes
API can be called from either Helm (to initialize a microservice at boot time) or from a Runtime Control
Adapter (to add resources at runtime). The remaining challenge is deciding which subsystem maintains the
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authoritative copy of that state, and ensuring that decision is enforced as a system invariant.2 Such decisions
are often situation-dependent, but our experience is that using Runtime Control as the single source-of-truth
is a sound approach.

Of course there are two sides to this coin. It is also tempting to provide runtime control of configuration
parameters that, at the end of the day, only cloud operators need to be able to change. Configuring the RBAC
(e.g., adding groups and defining what objects a given group is allowed to access) is an illustrative example.
Unless there is a compelling reason to open such configuration decisions to end users, keeping RBAC-related
configuration state (i.e., OPA spec files) in the Config Repo, under the purview of Lifecycle Management,
makes complete sense.

These examples illustrate the central value proposition of the runtime control interface, which is to scale
operations. It does this by enabling end users and closed-loop control programs to directly steer the system
without requiring that the ops team serve as an intermediary.

2 It is also possible to maintain two authoritative copies of the state, and implement a mechanism to keep them in sync. The
difficulty with such a strategy is avoiding backdoor access that bypasses the synchronization mechanism.
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CHAPTER

EIGHT

CHAPTER 6: MONITORING AND TELEMETRY

Collecting telemetry data for a running system is an essential function of the management platform. It en-
ables operators to monitor system behavior, evaluate performance, make informed provisioning decisions,
respond to failures, identify attacks, and diagnose problems. This chapter focuses on three types of telemetry
data—metrics, logs, and traces—along with exemplar open source software stacks available to help collect,
store, and act upon each of them.

Metrics are quantitative data about a system. These include common performance metrics such as link
bandwidth, CPU utilization, and memory usage, but also binary results corresponding to “up” and “down”,
as well as other state variables that can be encoded numerically. These values are produced and collected
periodically (e.g., every few seconds), either by reading a counter, or by executing a runtime test that returns a
value. These metrics can be associated with physical resources such as servers and switches, virtual resources
such as VMs and containers, or high-level abstractions such as the Connectivity Service described in Section
5.3. Given these many possible sources of data, the job of the metrics monitoring stack is to collect, archive,
visualize, and optionally analyze this data.

Logs are the qualitative data that is generated whenever a noteworthy event occurs. This information can
be used to identify problematic operating conditions (i.e., it may trigger an alert), but more commonly, it is
used to troubleshoot problems after they have been detected. Various system components—all the way from
the low-level OS kernel to high-level cloud services—write messages that adhere to a well-defined format
to the log. These messages include a timestamp, which makes it possible for the logging stack to parse and
correlate messages from different components.

Traces are a record of causal relationships (e.g., Service A calls Service B) resulting from user-initiated
transactions or jobs. They are related to logs, but provide more specialized information about the context
in which different events happen. Tracing is well-understood in a single program, where an execution trace
is commonly recorded as an in-memory call stack, but traces are inherently distributed across a graph of
network-connected microservices in a cloud setting. This makes the problem challenging, but also critically
important because it is often the case that the only way to understand time-dependent phenomena—such as
why a particular resource is overloaded—is to understand how multiple independent workflows interact with
each other.

Taking a step back from the three types of telemetry data, it is helpful to have a broad understanding of the
design space, and to that end, we make four observations.

First, there are two general use cases for telemetry data, which we broadly characterize as “monitoring” and
“troubleshooting”. We use these terms in the most general way to represent (a) proactively watching for
warning signs of trouble (attacks, bugs, failures, overload conditions) in a steady-state system; versus (b) re-
actively taking a closer look to determine the root cause and resolve an issue (fix a bug, optimize performance,
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provision more resources, defend against an attack), once alerted to a potential problem. This distinction is
important because the former (monitoring) needs to incur minimal overhead and require minimal human
involvement, while the latter (troubleshooting) can be more invasive/expensive and typically involves some
level of human expertise. This is not a perfect distinction, with plenty of operator activity happening in a
gray area, but being aware of the cost/benefit trade-offs of the available tools is an important starting point.

Second, the more aspects of monitoring and troubleshooting that can be automated, the better. This starts
with alerts that automatically detect potential problems; typically includes dashboards that make it easy
for humans to see patterns and drill down for relevant details across all three types of data; increasingly
leverages Machine Learning and statistical analysis to identify deeper connections that are not obvious to
human operators; and ultimately supports closed-loop control where the automated tool not only detects
problems but is also able to issue corrective control directives. For the purpose of this chapter, we give
examples of the first two (alerts and dashboards), and declare the latter two (analytics and close-loop control)
as out-of-scope (but likely running as applications that consume the telemetry data outlined in the sections
that follow).

Third, when viewed from the perspective of lifecycle management, monitoring and troubleshooting are just
a continuation of testing, except under production workloads rather than test workloads. In fact, the same set
of tools can be used on either side of the development-vs-production boundary. For example, as anyone who
has profiled a program will recognize and appreciate, tracing is an extremely valuable tool during develop-
ment—both to track down bugs and to tune performance. Similarly, artificial end-to-end tests can provide
value in production systems by triggering early warning alerts. This can be especially helpful when dealing
with problematic failure modes.

Finally, because the metrics, logs, and traces collected by the various subsystems are timestamped, it is pos-
sible to establish correlations among them, which is helpful when debugging a problem or deciding whether
or not an alert is warranted. We give examples of how such telemetry-wide functions are implemented in
practice today, as well as discuss the future future of generating and using telemetry data, in the final two
sections of this chapter.

8.1 6.1 Metrics and Alerts

Starting with metrics, a popular open source monitoring stack uses Prometheus to collect and store platform
and service metrics, Grafana to visualize metrics over time, and Alertmanager to notify the operations team of
events that require attention. In Aether, Prometheus and Alertmanager are instantiated on each edge cluster,
with a single instantiation of Grafana running centrally in the cloud. More information about each tool is
available online, so we focus more narrowly on (1) how individual Aether components “opt into” this stack,
and (2) how the stack can be customized in service-specific ways.

Further Reading

Prometheus.

Grafana.

Alertmanager.
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8.1.1 6.1.1 Exporting Metrics

Individual components implement a Prometheus Exporter to provide the current value of the component’s
metrics. A component’s Exporter is queried via HTTP, with the corresponding metrics returned using a
simple text format. Prometheus periodically scrapes the Exporter’s HTTP endpoint and stores the metrics in
its Time Series Database (TSDB) for querying and analysis. Many client libraries are available for instru-
menting code to produce metrics in Prometheus format. If a component’s metrics are available in some other
format, tools are often available to convert the metrics into Prometheus format and export them.

A YAML configuration file specifies the set of Exporter endpoints that Prometheus is to pull metrics from,
along will the polling frequency for each endpoint. Alternatively, Kubernetes-based microservices can be
extended with a Service Monitor Custom Resource Descriptor (CRD) that Prometheus then queries to learn
about any Exporter endpoints the microservice has made available.

In addition to component-based Exporters, every edge cluster periodically tests end-to-end connectivity (for
various definitions of end-to-end). One test determines whether the 5G control plane is working (i.e., the
edge site can reach the SD-Core running in the central cloud) and a second test determines whether the 5G
user plane is working (i.e., UEs can reach the Internet). This is a common pattern: individual components
can export accumulators and other local variables, but only a “third-party observer” can actively test external
behavior, and report the results. These examples correspond to the rightmost “End-to-End Tests” shown in
Figure 6.3 of Chapter 4.

Finally, when a system is running across multiple edge sites, as is the case with Aether, there is an design
question of whether monitoring data is stored on the edge sites and lazily pulled to the central location only
when needed, or is proactively pushed to the central location as soon as it’s generated. Aether employs both
approaches, depending on the volume and urgency of the data being collected. By default, metrics collected
by the local instantiation of Prometheus stay on the edge sites, and only query results are returned to the
central location (e.g., to be displayed by Grafana as described in the next subsection). This is appropriate
for metrics that are both high-volume and seldom viewed. One exception is the end-to-end tests described
in the previous paragraph. These results are immediately pushed to the central site (bypassing the local
Prometheus), because they are low-volume and may require immediate attention.

8.1.2 6.1.2 Creating Dashboards

The metrics collected by Prometheus are visualized using Grafana dashboards. In Aether, this means the
Grafana instance running as part of AMP in the central cloud sends queries to some combination of the
central Prometheus and a subset of the Prometheus instances running on edge clusters. For example, Figure
8.1 shows the summary dashboard for a collection of Aether edge sites.

Grafana comes with a set of predefined dashboards for the most common set of metrics—in particular, those
associated with physical servers and virtual resources such as containers—but it can also be customized to
include dashboards for service-level metrics and other deployment-specific information (e.g., per-enterprise
in Aether). For example, Figure 8.2 shows a custom dashboard for UPF (User Plane Function), the data plane
packet forwarder of the SD-Core. The example shows latency and jitter metrics over the last hour at one site,
with three additional collapsed panels (PFCP Sessions and Messages) at the bottom.

Briefly, a dashboard is constructed from a set of panels, where each panel has a well-defined type (e.g.,
graph, table, gauge, heatmap) bound to a particular Prometheus query. New dashboards are created using
the Grafana GUI, and the resulting configuration then saved in a JSON file. This configuration file is then
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Figure 8.1.: Central dashboard showing status of Aether edge deployments.

committed to the Config Repo, and later loaded into Grafana whenever it is restarted as part of Lifecycle
Management. For example, the following code snippet shows the Prometheus query corresponding to the
Uptime panel in Figure 8.1.

"expr": "avg(avg_over_time(ace_e2e_ok{endpoint=\"metrics80\",name=\"$edge\"}[$__
→˓interval]) * 100)",

Note that this expression includes variables for the site ($edge) and the interval over which the uptime is
computed ($__interval).

8.1.3 6.1.3 Defining Alerts

Alerts can be triggered in Prometheus when a component metric crosses some threshold. Alertmanager is a
tool that then routes the alert to one or more receivers, such as an email address or Slack channel.

An alert for a particular component is defined by an alerting rule, an expression involving a Prometheus query,
such that whenever it evaluates to true for the indicated time period, it triggers a corresponding message to
be routed to a set of receivers. These rules are recorded in a YAML file that is checked into the Config Repo
and loaded into Prometheus. (Alternatively, Helm Charts for individual components can define rules via
Prometheus Rule custom resources.) For example, the following code snippet shows the Prometheus Rule
for two alerts, where the expr lines corresponds to the respective queries submitted to Prometheus.
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Figure 8.2.: Custom dashboard showing latency and jitter metrics for UPF, the packet forwarding data plane
of the SD-Core component.

- alert: SingleEdgeTestNotReporting
annotations:
message: |

Cluster {{`{{ .Labels.name }}`}} has not reported for at least 5 minutes.
expr: (time() - aetheredge_last_update{endpoint="metrics80"}) > 300
for: 1m
labels:

severity: critical
- alert: SingleEdgeConnectTestFailing
annotations:

message: |
Cluster {{`{{ .Labels.name }}`}} reporting UE connect failure for at least␣

→˓10 minutes.
expr: aetheredge_connect_test_ok{endpoint="metrics80"} < 1
for: 10m
labels:

severity: critical

In Aether, the Alertmanager is configured to send alerts with critical or warning severity to a general set of
receivers. If it is desirable to route a specific alert to a different receiver (e.g., a Slack channel used by the
developers for that particular component), the Alertmanager configuration is changed accordingly.
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8.2 6.2 Logging

OS programmers have been writing diagnostic messages to a syslog since the earliest days of Unix. Originally
collected in a local file, the syslog abstraction has been adapted to cloud environments by adding a suite of
scalable services. Today, one typical open source logging stack uses Fluentd to collect (aggregate, buffer,
and route) log messages written by a set of components, with Fluentbit serving as a client-side agent running
in each component helping developers normalize their log messages. ElasticSearch is then used to store,
search, and analyze those messages, with Kibana used to display and visualize the results. The general flow
of data is shown in Figure 8.3, using the main Aether subsystems as illustrative sources of log messages.

Figure 8.3.: Flow of log messages through the Logging subsystem.

Further Reading

Fluentd.

ElasticSearch.

Kibana.

8.2.1 6.2.1 Common Schema

The key challenge in logging is to adopt a uniform message format across all components, a requirement that
is complicated by the fact that the various components integrated in a complex system are often developed
independently of each other. Fluentbit plays a role in normalizing these messages by supporting a set of filters.
These filters parse “raw” log messages written by the component (an ASCII string), and output “canonical”
log messages as structured JSON. There are other options, but JSON is reasonably readable as text, which
still matters for debugging by humans. It is also well-supported by tooling.

For example, developers for the SD-Fabric component might write a log message that looks like this:
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2020-08-18 05:35:54.842Z INFO [DistributedP4RuntimeTableMirror] Synchronized␣
→˓TABLE_ENTRY mirror for device:leaf1: 0 removed, 2 updated, 4 added

where a Fluentbit filter transforms into a structure that looks like this:

{
"time": "2020-08-18 05:35:54.842Z",
"logLevel": "INFO", "component": "DistributedP4RuntimeTableMirror",
"log": "Synchronized TABLE_ENTRY mirror for device:leaf1: 0 removed, 2 updated,

→˓ 4 added"
}

This example is simplified, but it does serve to illustrate the basic idea. It also highlights the challenge
the DevOps team faces in building the management platform, which is to decide on a meaningful set of
name/value pairs for the system as a whole. In other words, they must define a common schema for these
structured log messages. The Elastic Common Schema is a good place to start that definition, but among
other things, it will be necessary to establish the accepted set of log levels, and conventions for using each
level. In Aether, for example, the log levels are: FATAL, ERROR, WARNING, INFO, and DEBUG.

Further Reading

Elastic Common Schema.

8.2.2 6.2.2 Best Practices

Establishing a shared logging platform is, of course, of little value unless all the individual components are
properly instrumented to write log messages. Programming languages typically come with library support
for writing log messages (e.g., Java’s log4j), but that’s just a start. Logging is most effective if the components
adhere to the following set of best practices.

• Log shipping is handled by the platform. Components should assume that stdout/stderr is ingested
into the logging system by Fluentbit (or similar tooling), and avoid making the job more complicated
by trying to route their own logs. The exception is for external services and hardware devices that are
outside the management platform’s control. How these systems send their logs to a log aggregator
must be established as a part of the deployment process.

• File logging should be disabled. Writing log files directly to a container’s layered file system is proven
to be I/O inefficient and can become a performance bottleneck. It is also generally unnecessary if the
logs are also being sent to stdout/stderr. Generally, logging to a file is discouraged when a component
runs in a container environment. Instead, components should stream all logs to the collecting system.

• Asynchronous logging is encouraged. Synchronous logging can become a performance bottleneck
in a scaled environment. Components should write logs asynchronously.

• Timestamps should be created by the program’s logger. Components should use the selected log-
ging library to create timestamps, with as precise a timestamp as the logging framework allows. Using
the shipper or logging handlers may be slower, or create timestamps on receipt, which may be delayed.
This makes trying to align events between multiple services after log aggregation problematic.
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• Must be able to change log levels without interrupting service. Components should provide a
mechanism to set the log level at startup, and an API that allows the log level to be changed at runtime.
Scoping the log level based on specific subsystems is a useful feature, but not required. When a com-
ponent is implemented by a suite of microservices, the logging configuration need only be applied to
one instance for it to apply to all instances.

8.3 6.3 Distributed Tracing

Execution traces are the third source of telemetry data. Tracing is challenging in a cloud setting because
it involves following the flow of control for each user-initiated request across multiple microservices. The
good news is that instrumenting a set of microservices involves activating tracing support in the underly-
ing language runtime system—typically in the RPC stubs—rather than asking app developers to explicitly
instrument their programs.

The general pattern is similar to what we’ve already seen with metrics and logs: the running code is instru-
mented to produce data that is then collected, aggregated, stored, and made available for display and analysis.
The main difference is the type of data we’re interested in collecting, which, for tracing, is typically the se-
quence of API boundary crossings from one module to another. This data gives us the information we need
to reconstruct the call chain. In principle, we could leverage the logging system to support tracing—and just
be diligent in logging the necessary interface-crossing information—but it is a specialized enough use case
to warrant its own vocabulary, abstractions, and mechanisms.

At a high level, a trace is a description of a transaction as it moves through the system. It consists of a sequence
of spans (each of which represents work done within a service) interleaved with a set of span contexts (each
of which represents the state carried across the network from one service to another). An illustrative example
of a trace is shown in Figure 8.4, but abstractly, a trace is a directed graph with nodes that correspond to spans
and edges that correspond to span contexts. The nodes and edges are then timestamped and annotated with
relevant facts (key/value tags) about the end-to-end execution path, including when and for how long it ran.
Each span also includes timestamped log messages generated while the span was executing, simplifying the
process of correlating log messages with traces.

Figure 8.4.: Example trace spanning two network services.

Again, as with metrics and log messages, the details are important and those details are specified by an
agreed-upon data model. The OpenTelemetry project is now defining one such model, building on the earlier
OpenTracing project (which was in turn influenced by the Dapper distributed tracing mechanism developed
by Google). Beyond the challenge of defining a model that captures the most relevant semantic information,
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there is the pragmatic issue of (1) minimizing the overhead of tracing so as not to negatively impact applica-
tion performance, yet (2) extracting enough information from traces so as to make collecting it worthwhile.
Sampling is a widely adopted technique introduced into the data collection pipeline to manage this trade-off.
One consequence of these challenges is that distributed tracing is the subject of ongoing research, and we
can expect the model definitions and sampling techniques to evolve and mature in the foreseeable future.

Further Reading

B. Sigelman, et al. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Google Technical
Report. April 2010.

OpenTelemetry: High-quality, ubiquitous, and portable telemetry to enable effective observability.

Jaeger: End-to-End Distributed Tracing.

With respect to mechanisms, Jaeger is a widely used open source tracing tool originally developed by Uber.
(Jaeger is not currently included in Aether, but was utilized in a predecessor ONF edge cloud.) Jaeger includes
instrumentation of the runtime system for the language(s) used to implement an application, a collector,
storage, and a query language that can be used to diagnose performance problems and do root cause analysis.

8.4 6.4 Integrated Dashboards

The metrics, logs and traces being generated by instrumented application software make it possible to collect
a wealth of data about the health of a system. But this instrumentation is only useful if the right data is
displayed to the right people (those with the ability to take action) at the right time (when action needs to
be taken). Creating useful panels and organizing them into intuitive dashboards is part of the solution, but
integrating information across the subsystems of the management platform is also a requirement.

Unifying all this data is the ultimate objective of ongoing efforts like the OpenTelemetry project mentioned
in the previous section, but there are also opportunities to use the tools described in this chapter to better
integrate data. This section highlights two general strategies.

First, both Kibana and Grafana can be configured to display telemetry data from multiple sources. For
example, it is straightforward to integrate both logs and traces in Kibana. This is typically done by first
feeding the tracing data into ElasticSearch, which Kibana then queries. Similarly, it is useful to have a
convenient way to see the log messages associated with a particular component in the context of metrics that
have been collected. This is easy to accomplish because Grafana can be configured to display data from
ElasticSearch just as easily as from Prometheus. Both are data sources that can be queried. This makes it
to possible to create a Grafana dashboard that includes a selected set of log messages, similar to the one
from Aether shown in Figure 8.5. In this example, we see INFO-level messages associated with the UPF
sub-component of SD-Core, which augments the UPF performance data shown in Figure 8.2.

Second, the runtime control interface described in Chapter 5 provides a means to change various parameters
of a running system, but having access to the data needed to know what changes (if any) need to be made is
a prerequisite for making informed decisions. To this end, it is ideal to have access to both the “knobs” and
the “dials” on an integrated dashboard. This can be accomplished by incorporating Grafana frames in the
Runtime Control GUI, which, in its simplest form, displays a set of web forms corresponding to the fields in
the underlying data models. (More sophisticated control panels are certainly possible.)

8.4. 6.4 Integrated Dashboards 97

https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://opentelemetry.io/
https://www.jaegertracing.io/


Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

Figure 8.5.: Log messages associated with the UPF element of SD-Core, displayed in a Grafana dashboard.

For example, Figure 8.6 shows the current set of device groups for a fictional set of Aether sites, where
clicking on the “Edit” button pops up a web form that lets the enterprise admin modify the corresponding
fields of the Device-Group model (not shown), and clicking on the “Monitor” button pops up a Grafana-
generated frame similar to the one shown in Figure 8.7. In principle, this frame is tailored to show only the
most relevant information associated with the selected object.

8.5 6.5 Observability

Knowing what telemetry data to collect, so you have exactly the right information when you need it, but doing
so without negatively impacting system performance, is a difficult problem. Observability is a relatively new
term being used to describe this general problem space, and while the term can be dismissed as the latest
marketing buzzword (which it is), it can also be interpreted as another of the set of “-ities” that all good
systems aspire to, alongside scalability, reliability, availability, security, usability, and so on. Observability
is the quality of a system that makes visible the facts about its internal operation needed to make informed
management and control decisions. It has become a fertile space for innovation, and so we conclude this
chapter with two examples that may become commonplace in the near future.

The first is Inband Network Telemetry (INT), which takes advantage of programmable switching hardware to
allow operators to ask new questions about how packets are being processed “in-band”, as they flow through
the network. This is in contrast to either depending on the predefined set of counters hardwired into fixed-
function network devices, or being able to inspect just a sampled subset of packets. Because Aether uses
programmable switches as the foundation for its SDN-based switching fabric, it is able to use INT as a fourth
type of telemetry data, and in doing so provide qualitatively deeper insights into traffic patterns and the root
causes of network failures.

For example, INT has been used to measure and record queuing delay individual packets experience while
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Figure 8.6.: Example control dashboard showing the set of Device Groups defined for a fictional set of Aether
sites.

traversing a sequence of switches along an end-to-end path, making it possible to detect microbursts (queuing
delays measured over millisecond or even sub-millisecond time scales). It is even possible to correlate this
information across packet flows that followed different routes, so as to determine which flows shared buffer
capacity at each switch. As another example, INT has been used to record the decision making process that
directed how packets are delivered, that is, which forwarding rules were applied at each switch along the
end-to-end path. This opens the door to using INT to verify that the data plane is faithfully executing the
forwarding behavior the network operator intends. For more information about INT, we refer the reader to
our companion SDN book.

Further Reading

L. Peterson, et al. Software-Defined Networking: A Systems Approach. November 2021.

The second is the emergence of Service Meshes mentioned in Chapter 1. A Service Mesh framework such
as Istio provides a means to enforce fine-grained security policies and collect telemetry data in cloud native
applications by injecting “observation/enforcement points” between microservices. These injection points,
called sidecars, are typically implemented by a container that “runs along side” the containers that implement
each microservice, with all RPC calls from Service A to Service B passing through their associated sidecars.
As shown in Figure 8.8, these sidecars then implement whatever policies the operator wants to impose on
the application, sending telemetry data to a global collector and receiving security directives from a global
policy engine.

From the perspective of observability, sidecars can be programmed to record whatever information operators

8.5. 6.5 Observability 99

https://sdn.systemsapproach.org


Edge Cloud Operations: A Systems Approach, Release Version 1.1-dev

Figure 8.7.: Example monitoring frame associated with a selected Device Group.

might want to collect, and in principle, they can even be dynamically updated as conditions warrant. This
provides a general way for operators to define how the system is observed without having to rely on instrumen-
tation developers might include in their services. The downside is that sidecars impose a nontrivial amount
of overhead on inter-service communication. For that reason, alternative approaches to sidecars are gaining
traction, notably Cilium, which uses eBPF (extended Berkeley Packet Filters) to implement observability,
security and networking data plane features inside the kernel rather than in a sidecar.

For more information about the Istio Service Mesh, we recommend Calcote and Butcher’s book. The Cilium
project has extensive documentation and tutorials at its web site.

Further Reading

L. Calcote and Z. Butcher Istio: Up and Running. October 2019.

Cilium: eBPF-based Networking, Observability, Security.
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Figure 8.8.: Overview of a Service Mesh framework, with sidecars intercepting messages flowing between
Services A and B. Each sidecar enforces security policy received from the central controller and sends teleme-
try data to the central controller.
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CHAPTER

NINE

ABOUT THE BOOK

Source for Edge Cloud Operations: A Systems Approach is available on GitHub under terms of the Creative
Commons (CC BY-NC-ND 4.0) license. The community is invited to contribute corrections, improvements,
updates, and new material under the same terms. While this license does not automatically grant the right to
make derivative works, we are keen to discuss derivative works (such as translations) with interested parties.
Please reach out to discuss@systemsapproach.org.

If you make use of this work, the attribution should include the following information:

Title: Edge Cloud Operations: A Systems Approach
Authors: Larry Peterson, Scott Baker, Andy Bavier, Zack Williams, Bruce Davie
Source: https://github.com/SystemsApproach/ops
License: CC BY-NC-ND 4.0

9.1 Read the Book

This book is part of the Systems Approach Series, with an online version published at https://ops.
systemsapproach.org.

To track progress and receive notices about new versions, you can follow the project on Facebook and
Mastodon. To read a running commentary on how the Internet is evolving, you can follow the Systems
Approach on Substack.

9.2 Build the Book

To build a web-viewable version, you first need to download the source:

$ mkdir ~/systemsapproach
$ cd ~/systemsapproach
$ git clone https://github.com/SystemsApproach/ops.git
$ cd ops
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The build process is stored in the Makefile and requires Python be installed. The Makefile will create a
virtualenv (venv-docs) which installs the documentation generation toolset. You may also need to install
the enchant C library using your system’s package manager for the spelling checker to function properly.

To generate HTML in _build/html, run make html.

To check the formatting of the book, run make lint.

To check spelling, run make spelling. If there are additional words, names, or acronyms that are correctly
spelled but not in the dictionary, please add them to the dict.txt file.

To see the other available output formats, run make.

9.3 Contribute to the Book

We hope that if you use this material, you are also willing to contribute back to it. If you are new to open
source, you might check out this How to Contribute to Open Source guide. Among other things, you’ll learn
about posting Issues that you’d like to see addressed, and issuing Pull Requests to merge your improvements
back into GitHub.

If you’d like to contribute and are looking for something that needs attention, see the wiki for the current
TODO list.
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Substack Newsletter: Stay up to date with the latest developments by following the authors on Substack,
where they connect the concepts and lessons in this book to what’s happening in the Internet today.

Book Series: Also check out our companion books that cover emerging topics in more depth.

• Private 5G: A Systems Approach

• Software-Defined Networks: A Systems Approach

• TCP Congestion Control: A Systems Approach
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